Advances in stochastic mortality modelling and demographic feature extraction

Advances in stochastic mortality modelling and demographic feature extraction


Thanks! Share it with your friends!


You disliked this video. Thanks for the feedback!

Sorry, only registred users can create playlists.


Speaker(s): Gareth Peters (Heriot-Watt University)

A new class of multi-factor extension of the family of Lee-Carter stochastic mortality models is explored. We build upon the time, period and cohort stochastic model structure to extend it to include exogenous observable demographic features that can be used as additional factors to improve model fit and forecASTINg accuracy.
A dimension reduction feature extraction framework is proposed which: 
a) employs projection based techniques of dimensionality reduction; in doing this we also develop 
b) a statistically robust feature extraction framework that is amenable to different structures of demographic data; 
c) we analyse demographic data sets from the patterns of missingness and the impact of such missingness on the feature extraction, and 
d) introduce a class of multi-factor stochastic mortality models incorporating time, period, cohort and demographic features, which we develop within a Bayesian statespace estimation framework; finally
e) we develop an efficient combined Markov chain and filtering framework for sampling the posterior and forecASTINg.
We undertake a detailed case study on the Human Mortality Database demographic data from European countries and we use the extracted features to better explain the term structure of mortality in the UK over time for male and female populations when compared to a pure Lee-Carter stochastic mortality model, demonstrating our feature extraction framework and consequent multi-factor mortality model improves both in sample fit and importantly out-off sample mortality forecasts by a non-trivial gain in performance.

Post your comment

Sign in or sign up to post comments.
Be the first to comment