

Model Uncertainty and Expert Opinions in Continuous-Time Financial Markets

Dorothee Westphal TU Kaiserslautern

Motivation

One should always divide his wealth into three parts: a third in land, a third in merchandise, and a third ready to hand.¹ – Rabbi Aha (ca. 4th century)

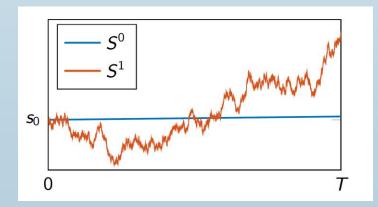
[W]e find that of the various optimizing models in the literature, there is no single model that consistently delivers a Sharpe ratio [...] higher than that of the 1/N portfolio [...]. – DeMiguel, Garlappi, Uppal (2009)

The 1/N investment strategy is optimal under high model ambiguity. – Pflug, Pichler, Wozabal (2012)

¹Babylonian Talmud: Tractate Baba Mezi'a, folio 42a.

The Merton Problem

Utility maximization in a Black-Scholes model



Utility maximization problem $V(x_0) = \sup_{\pi \in \mathcal{A}(x_0)} \mathbb{E}[U(X_T^{\pi})]$

solved for most popular utility functions

Assumption that model parameters are known!

- 1. Model Uncertainty
- 2. Expert Opinions
- 3. Robust Optimization with Expert Opinions

1. Model Uncertainty

- 2. Expert Opinions
- **3. Robust Optimization with Expert Opinions**

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Financial Market Model

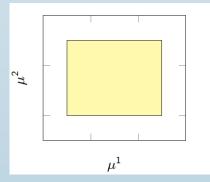
With drift uncertainty

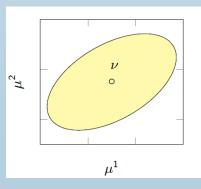
MATHEMATIK

Black-Scholes model

- one riskless asset, interest rate r
- $d \ge 2$ risky assets $dS_t = diag(S_t)(\mu dt + \sigma dW_t^{\mu})$
- wealth process $(X_t^{\pi})_{t \in [0,T]}$ corresponding to strategy π
- objective: maximize

 $\inf_{\mu \in K} E_{\mu}[U(X_T^{\pi})]$ over admissible strategies π

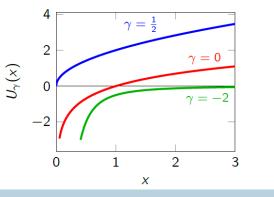




A First Result It's best to not invest!

Let U_{γ} for $\gamma \in (-\infty, 1)$ denote power or logarithmic utility.

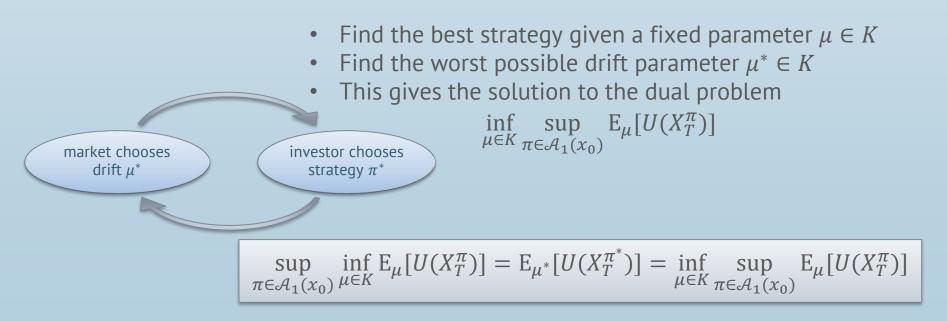
If $r\mathbf{1}_d \in K$, then $\pi \equiv 0$ is optimal for the worst-case optimization problem.



Constraint on admissible strategies: $\langle \pi_t, \mathbf{1}_d \rangle = 1$ for all $t \in [0, T]$

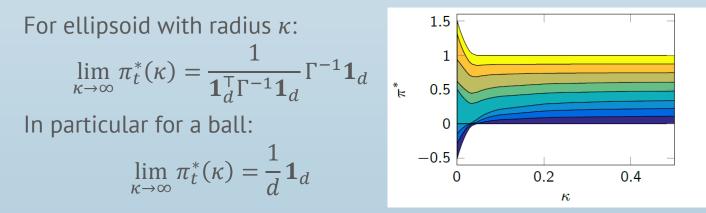
How the Problem is Solved

A minimax theorem



Asymptotic Behavior for Large Uncertainty

Convergence of the optimal strategy



The optimal strategy converges to a generalized uniform diversification strategy as the level of uncertainty goes to infinity.

1. Model Uncertainty

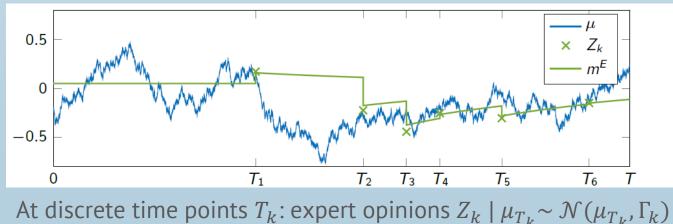
2. Expert Opinions

3. Robust Optimization with Expert Opinions

Financial Market Model

Stochastic drift and expert opinions

Ornstein–Uhlenbeck drift process: $dS_t = diag(S_t)(\mu_t dt + \sigma_R dW_t^R)$ $d\mu_t = \alpha(\delta - \mu_t) dt + \beta dB_t$



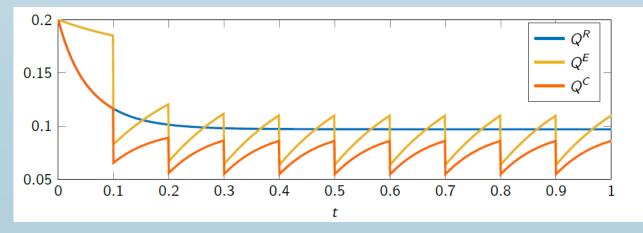
Filtering

Conditional mean and conditional covariance matrix

For investor filtration $(\mathcal{F}_t^H)_{t\geq 0}$ define

•
$$m_t^H = \mathbb{E}[\mu_t \mid \mathcal{F}_t^H]$$

•
$$Q_t^H = \mathbb{E}[(\mu_t - m_t^H)(\mu_t - m_t^H)^{\mathsf{T}} | \mathcal{F}_t^H]$$

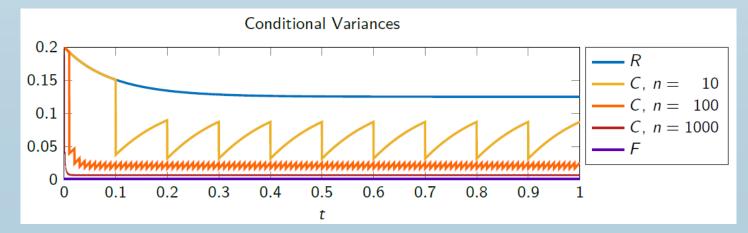


TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

MATHEMATIK

Experts with Bounded Variance Convergence to full information

- Deterministic information dates, grid size Δ_n goes to zero
- Experts' covariances $\Gamma_k^{(n)}$ are bounded
- Convergence to full information

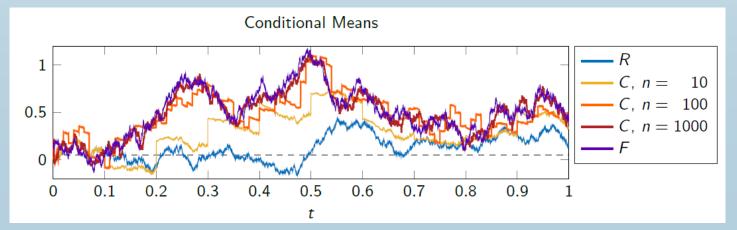


TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

MATHEMATIK

Experts with Bounded Variance Convergence to full information

- Deterministic information dates, grid size Δ_n goes to zero
- Experts' covariances $\Gamma_k^{(n)}$ are bounded
- Convergence to full information

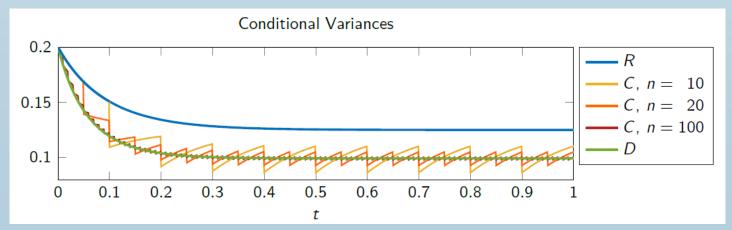


Diffusion Approximation For deterministic information dates

• *n* deterministic equidistant information dates, grid size $\Delta_n = T/n$

• Experts' covariances grow linearly in n: $\Gamma_k^{(n)} = \frac{1}{\Delta_n} \sigma_J \sigma_J^{\mathsf{T}}$

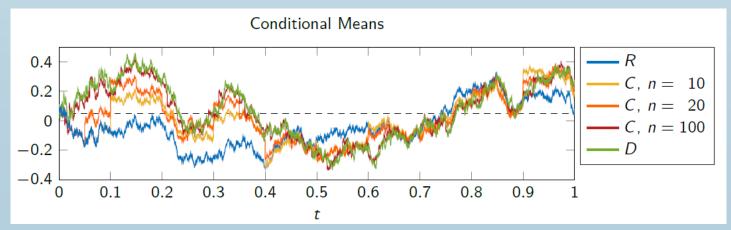
Convergence to "continuous-time expert"



Diffusion Approximation For deterministic information dates

• *n* deterministic equidistant information dates, grid size $\Delta_n = T/n$

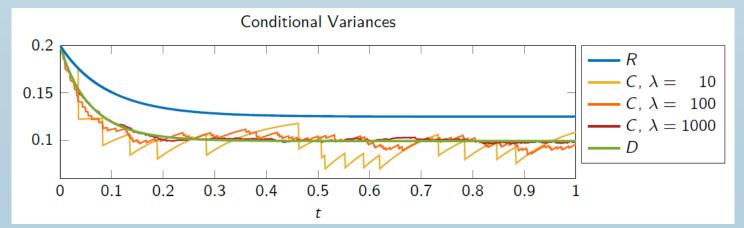
- Experts' covariances grow linearly in n: $\Gamma_k^{(n)} = \frac{1}{\Delta_n} \sigma_J \sigma_J^{\mathsf{T}}$
- Convergence to "continuous-time expert"



Diffusion Approximation For random information dates

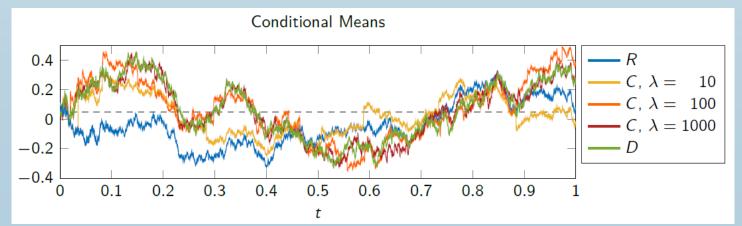
- T_k are jump times of a Poisson process with intensity λ
- Experts' covariances grow linearly in λ : $\Gamma_k^{(\lambda)} = \lambda \sigma_J \sigma_J^{\mathsf{T}}$

Convergence to "continuous-time expert"



Diffusion Approximation For random information dates

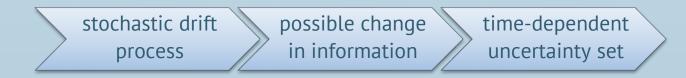
- T_k are jump times of a Poisson process with intensity λ
- Experts' covariances grow linearly in λ : $\Gamma_k^{(\lambda)} = \lambda \sigma_J \sigma_J^{\mathsf{T}}$
- Convergence to "continuous-time expert"



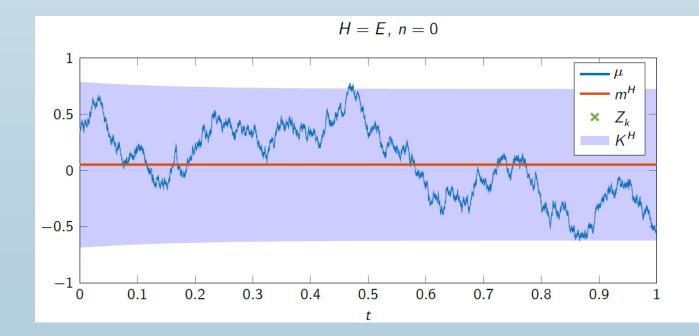
- 1. Model Uncertainty
- 2. Expert Opinions
- 3. Robust Optimization with Expert Opinions

Robust Optimization with Expert Opinions Combination of the two previous approaches

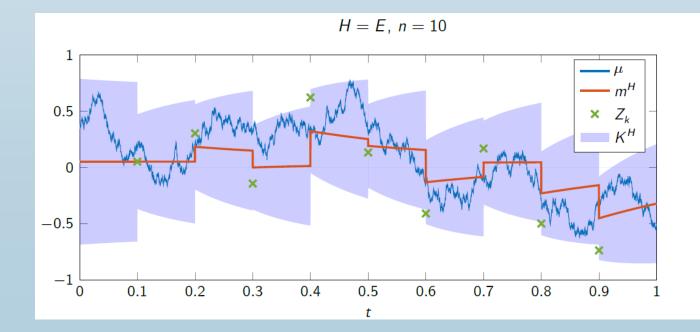
- Generalization of model uncertainty approach
- $(K_t)_{t \in [0,T]}$ motivated by filtering for drift estimation
- Leads to local optimization problems at each $t \in [0, T]$
- Decision is updated continuously in time



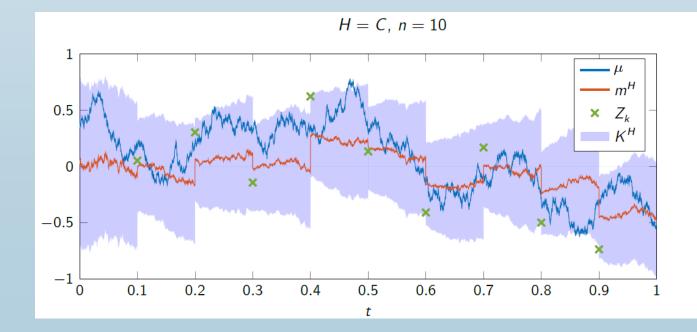
Examples of Time-Dependent Uncertainty Sets Information from expert opinions



Examples of Time-Dependent Uncertainty Sets Information from expert opinions



Examples of Time-Dependent Uncertainty Sets Information from expert opinions



Summary

- Duality approach for solving a robust utility maximization problem
- Minimax theorem and convergence of the optimal strategy to a generalized uniform diversification strategy
- Expert opinions yield better estimates of the drift process
- Asymptotic results for large numbers of expert opinions
- Combination of two approaches for a financial market model with stochastic drift

Literature

- V. DeMiguel, L. Garlappi & R. Uppal: Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?, *The Review of Financial Studies* 22 (2009), no. 5, pp. 1915–1953.
- R. C. Merton: Lifetime portfolio selection under uncertainty: the continuous-time case, *The Review of Economics and Statistics* **51** (1969), no. 3, pp. 247–257.
- G. Pflug, A. Pichler & D. Wozabal: The 1/N investment strategy is optimal under high model ambiguity, *Journal of Banking & Finance* 36 (2012), no. 2, pp. 410–417.
- J. Sass, D. Westphal & R. Wunderlich: Expert opinions and logarithmic utility maximization for multivariate stock returns with Gaussian drift, *International Journal of Theoretical and Applied Finance* **20** (2017), no. 4, 1750022. 41 pages.
- J. Sass, D. Westphal & R. Wunderlich: Diffusion approximations for expert opinions in a financial market with Gaussian drift (2018). Available on arXiv: <u>https://arxiv.org/abs/1807.00568</u>.
- J. Sass & D. Westphal: Robust utility maximizing strategies under model uncertainty and their convergence (2019). Available on arXiv: <u>https://arxiv.org/abs/1909.01830</u>.

Questions or comments? E-mail: <u>westphal@mathematik.uni-kl.de</u>