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One should always divide his wealth into three parts: a third 
in land, a third in merchandise, and a third ready to hand.1

– Rabbi Aha (ca. 4th century)

[W]e find that of the various optimizing models in the 
literature, there is no single model that consistently delivers a 
Sharpe ratio [. . . ] higher than that of the 1/N portfolio [. . . ].

– DeMiguel, Garlappi, Uppal (2009)

The 1/N investment strategy is optimal under high model ambiguity.
– Pflug, Pichler, Wozabal (2012)

Motivation

1Babylonian Talmud: Tractate Baba Mezi’a, folio 42a.



The Merton Problem

Utility maximization problem

𝑉 𝑥0 = sup
𝜋∈𝒜(𝑥0)

E[𝑈(𝑋𝑇
𝜋)]

➢ solved for most popular 
utility functions

Utility maximization in a Black–Scholes model

Assumption that model parameters are known!
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Financial Market Model

Black–Scholes model
• one riskless asset, interest rate 𝑟
• 𝑑 ≥ 2 risky assets

d𝑆𝑡 = diag(𝑆𝑡) 𝜇 d𝑡 + 𝜎 d𝑊𝑡
𝜇

• wealth process 𝑋𝑡
𝜋

𝑡∈[0,𝑇] corresponding 

to strategy 𝜋
• objective: maximize

inf
𝜇∈𝐾

E𝜇[𝑈(𝑋𝑇
𝜋)]

over admissible strategies 𝜋

With drift uncertainty



A First Result

Let 𝑈𝛾 for 𝛾 ∈ (−∞, 1) denote power 
or logarithmic utility.

It’s best to not invest!

If 𝑟𝟏𝑑 ∈ 𝐾, then 𝜋 ≡ 0 is optimal for 
the worst-case optimization problem.

Constraint on admissible strategies:
𝜋𝑡, 𝟏𝑑 = 1 for all 𝑡 ∈ 0, 𝑇

sup
𝜋∈𝒜1(𝑥0)

inf
𝜇∈𝐾

E𝜇[𝑈(𝑋𝑇
𝜋)]



How the Problem is Solved

• Find the best strategy given a fixed parameter 𝜇 ∈ 𝐾
• Find the worst possible drift parameter 𝜇∗ ∈ 𝐾
• This gives the solution to the dual problem

inf
𝜇∈𝐾

sup
𝜋∈𝒜1(𝑥0)

E𝜇[𝑈(𝑋𝑇
𝜋)]

A minimax theorem

sup
𝜋∈𝒜1(𝑥0)

inf
𝜇∈𝐾

E𝜇[𝑈(𝑋𝑇
𝜋)] = E𝜇∗[𝑈(𝑋𝑇

𝜋∗)] = inf
𝜇∈𝐾

sup
𝜋∈𝒜1(𝑥0)

E𝜇[𝑈(𝑋𝑇
𝜋)]

investor chooses 
strategy 𝜋∗

market chooses 
drift 𝜇∗



Asymptotic Behavior for Large Uncertainty

For ellipsoid with radius 𝜅:

lim
𝜅→∞

𝜋𝑡
∗ 𝜅 =

1

𝟏𝑑
⊤Γ−1𝟏𝑑

Γ−1𝟏𝑑

In particular for a ball:

lim
𝜅→∞

𝜋𝑡
∗ 𝜅 =

1

𝑑
𝟏𝑑

Convergence of the optimal strategy

The optimal strategy converges to a generalized 
uniform diversification strategy as the level of 
uncertainty goes to infinity.
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Financial Market Model

Ornstein–Uhlenbeck drift process:
d𝑆𝑡 = diag(𝑆𝑡) 𝜇𝑡 d𝑡 + 𝜎𝑅 d𝑊𝑡

𝑅

d𝜇𝑡 = 𝛼(𝛿 − 𝜇𝑡) d𝑡 + 𝛽 d𝐵𝑡

Stochastic drift and expert opinions

At discrete time points 𝑇𝑘 : expert opinions 𝑍𝑘 | 𝜇𝑇𝑘~𝒩(𝜇𝑇𝑘 , Γ𝑘)



Filtering

For investor filtration ℱ𝑡
𝐻

𝑡≥0 define
• 𝑚𝑡

𝐻 = E 𝜇𝑡 | ℱ𝑡
𝐻

• 𝑄𝑡
𝐻 = E 𝜇𝑡 −𝑚𝑡

𝐻 𝜇𝑡 −𝑚𝑡
𝐻 ⊤| ℱ𝑡

𝐻

Conditional mean and conditional covariance matrix



Experts with Bounded Variance

• Deterministic information dates, grid size Δ𝑛 goes to zero

• Experts’ covariances Γ𝑘
(𝑛)

are bounded

➢ Convergence to full information
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Diffusion Approximation

• 𝑛 deterministic equidistant information dates, grid size Δ𝑛 = Τ𝑇 𝑛

• Experts’ covariances grow linearly in 𝑛: Γ𝑘
(𝑛)

=
1

Δ𝑛
𝜎𝐽𝜎𝐽

⊤
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Robust Optimization with Expert Opinions

• Generalization of model uncertainty approach

• 𝐾𝑡 𝑡∈[0,𝑇] motivated by filtering for drift estimation
• Leads to local optimization problems at each 𝑡 ∈ [0, 𝑇]
• Decision is updated continuously in time

Combination of the two previous approaches

stochastic drift 

process

possible change 

in information

time-dependent 

uncertainty set



Examples of Time-Dependent Uncertainty Sets
Information from expert opinions
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Summary

▪ Duality approach for solving a robust utility maximization 
problem

▪ Minimax theorem and convergence of the optimal 
strategy to a generalized uniform diversification strategy

▪ Expert opinions yield better estimates of the drift process
▪ Asymptotic results for large numbers of expert opinions

▪ Combination of two approaches for a financial market 
model with stochastic drift
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E-mail: westphal@mathematik.uni-kl.de

https://arxiv.org/abs/1807.00568
https://arxiv.org/abs/1909.01830
mailto:westphal@mathematik.uni-kl.de

