

DISTRIBUTIONAL FORECASTING OF OUTSTANDING LIABILITIES WITH NEURAL NETWORKS

Muhammed Al-Mudafer (University of New South Wales, Australia)
In collaboration with:

Benjamin Avanzi (University of Melbourne, Australia) **Greg Taylor** (University of New South Wales, Australia)

Bernard Wong (University of New South Wales, Australia)

CONTENTS

- 1. Introduction
- 2. Model Design and Development
- 3. Results
- 4. Practical Considerations
- 5. Discussion

Paper: Stochastic loss reserving with mixed density neural networks

Code: Available on GitHub: agi-lab/reserving-MDN-ResMDN

MACHINE LEARNING IN THE ACTUARIAL FIELD

- Machine learning has seen a rapid increase in application in the actuarial field, in areas such as mortality modelling, pricing and loss reserving
- Neural networks (NNs) have shown great potential thus far
- We focus our work on NEURAL NETWORKS (NNs) and apply them to RESERVING with LOSS TRIANGLES

NEURAL NETWORKS IN RESERVING: POTENTIAL

- Highly flexible, can capture complex trends in the data. Have outperformed the Chain Ladder in early applications
- Versatile modelling: Can learn from visual data, categorical data, time data, etc.
- Granular data: Neural networks thrive with large, granular data. We also demonstrate that it performs well with aggregate data

NEURAL NETWORKS IN RESERVING: RISKS AND CURRENT CHALLENGES

- Most NN reserving applications focus on giving **central estimates**; less focus on the **distribution**, which is critical for risk management
- Black box! NNs have low interpretability. Hard to justify results to stakeholders
- Can be unpredictable when extrapolating, due to their flexibility
- Require a lot of data risky on a loss triangle
- Addressing these risks can help NNs realise their potential, encourage implementation in practice

NEURAL NETWORKS IN RESERVING: **ADDRESSING**SHORTCOMINGS

WE IMPLEMENT A NEURAL NETWORK THAT:

- 1. Predicts the distribution of outstanding claims
- 2. Is easy to fit
- 3. Can be adapted to an Actuarial Neural Network hybrid approach for increased **interpretability**
- 4. Incorporates actuarial judgement, ensuring projections are reasonable
- 5. And most importantly, provides **accurate** reserve estimates (outperforms the chain ladder benchmark)

DATA: LOSS TRIANGLE

- 40x40 loss triangles (Figure 1)
- Accident quarters (AQ): i
- Development quarters (DQ): j
- ullet Incremental Claims, $X_{i,j}$
- Benchmark: Stochastic Chain Ladder (CL)

Figure 1: Aggregate loss triangle

NEURAL NETWORKS

- A neural network consists of an input layer, hidden layers (with hidden nodes) and an output layer
- Nodes are connected by weights (arrows),
 which carry the input to the output
- Input x is passed through the network weights and hidden nodes, which transforms x into \hat{y}
- Weight parameters (arrows) are optimised to improve the fit $\widehat{m{y}}$

Figure 2: Example neural network

DISTRIBUTIONAL FORECASTING: MIXTURE DENSITY NETWORKS (MDN)

- Assume losses $X_{i,j}$ follow a Mixed Gaussian distribution, as such:
- $f_{\widehat{X}_{i,j}}(x) = \sum_{k=1}^K \alpha_k \phi(x|\mu_k, \sigma_k)$
- Mixture Density Network (Figure 3) produces the (α, μ, σ) parameters as output

Figure 3: Mixture Density Network

MIXTURE DENSITY NETWORK (MDN): INTUITION

- Mixed Gaussian can approximate any distribution (given enough components)
- Relatively simplistic network
- Accurate central estimates

DATA SPECIFICATIONS

Simulated data, using the SynthETIC Simulator, **4 different environments**:

- 1. Simple, short tail claims
- 2. Gradually speeding up claim settlement
- 3. Inflation shock
- 4. Complex, volatile long tail claims

50 triangles for each simulated environment

- Real data (AUSI), Auto Bodily Injury, long tail claims, 10 triangles
- MDN run on 210 triangles

Environment 2: Speed up settlement

AUSI: Auto Bodily Injury, long tail claims

RESULTS – SMOOTH, ROBUST FORECASTS

- Environment 4
- Smooth, robust and accurate forecasts, even with volatile long tail claims

SAMPLE RESULTS — CAPTURED TRENDS

- Environment 2: Claim settlement speed increases
- MDN captured that change
- Chain Ladder (CL), assumes homogeneity, failed to capture change

QUANTITATIVE ANALYSIS: MEAN ESTIMATES

- Central estimate accuracy for $X_{i,j}$
- RMSE metric (Root Mean Squared Error)
- Lower RMSE = more accurate fit
- Figure 4 shows the MDN had a lower RMSE than the Chain Ladder in the overwhelming majority of triangles in all environments

Figure 4: Boxplots of (RMSE (MDN)/ RMSE (Chain Ladder)) over 50 (10 for AUSI) triangles

QUANTITATIVE PERFORMANCE OVERALL

- MDN consistently produced more accurate reserve estimates than the Chain Ladder
- Log-likelihood measures distributional accuracy.
- MDN had a higher loglikelihood than Chain Ladder in majority of triangles
- Hence, MDN's distributional forecast consistently outperformed the stochastic Chain Ladder

Environment	Mean RMSE (% of Chain Ladder)	RMSE — Triangles MDN Outperformed CL (%)	Log- Likelihood – Triangles MDN Outperformed CL (%)
1	90	80	80
2	35	100	100
3	79	100	96
4	52	92	96
AUSI (Real data)	84	100	100

RESMDN: GLM – MDN HYBRID MODEL

- Follows the work of Wuethrich & Merz (2019), Gabrielli et al (2020)
- Hybrid model: GLM forms backbone, while the Neural Network boosts the GLM's residuals (Figure 5)
- NN picks up trends which the GLM missed
- Combines GLM interpretability with NN modelling power
- Output = GLM + NN boosting

Figure 5: Diagram of ResMDN

SAMPLE RESULTS: BOOSTING CHAIN LADDER

- Environment 2: Claim settlement speed increases
- ResMDN corrected the Chain Ladder's errors, to an extent
- Results are easier to understand and justify

THE MIXTURE DENSITY NETWORK:

- Provides accurate mean and distributional forecasts
- Performs well with a 40x40 triangle
- Captured trends, outperformed the Chain Ladder in a variety of test environments
- Can be hybridised with a GLM for more interpretability
- Tested on hundreds of triangles, consistent results

SOME CONSIDERATIONS

- MDN isn't perfect. Missed some trends, especially ones embedded in little data
- Results came after experimentation. Several techniques developed to tackle the MDN's shortcomings, outlined in attached paper

CONCLUSION - FUTURE POTENTIAL OF NEURAL NETWORKS IN RESERVING

With actuarial supervision and guidance, the MDN is a powerful modelling tool for reserving (among other actuarial fields), and has future potential. For example:

- Learning from multiple triangles simultaneously; creating a 'reserving brain' that can be imported to any individual triangle
- Fitting different mixture distributions, such as Gamma, Pareto

REFERENCES

- Gabrielli, A., Richman, R., Wuethrich, M.V., 2020. Neural network embedding of the over-dispersed poisson reserving model. Scandinavian Actuarial Journal 2020, 1–29.
 - URL:http://www.tandfonline.com/doi/abs/10.1080/03461238.2019.16333 94.
- Wuethrich, M.V., Merz, M., 2019. Yes, we cann! ASTIN Bulletin: The Journal of the IAA 49, 1–3.

LOSS TRIANGLES

Environment 3: Increase in inflation

Environment 4: Complex, volatile long tail

RESULTS - ACCURATE DISTRIBUTION ESTIMATES

- ullet MDN accurately quantifies the risk margins (shape) of incremental claims, $\widehat{X}_{i,j}$
- Hence, the distributional forecast is accurate

INCORPORATING ACTUARIAL JUDGEMENT

- Output can be constrained to boundaries set by the practitioner.
- Useful in case the MDN gives clearly unreasonable projections, or misses a visible trend
- Ensures forecasts are always reasonable
- Allows practitioner to control the model's macro-behaviour

BEFORE AFTER

ENVIRONMENT 1

- Comparing results for Environment 1 (simple, short tail claims
- Both perform well, as data is homogeneous

ENVIRONMENT 4

- Comparing results for Environment 6 (complex, long tail claims)
- Chain Ladder is volatile, MDN gives smooth, accurate output

- Distributional accuracy of $f_{\widehat{X}_{i,j}}$
- Log Score (Log-Likelihood) used
- Higher log score = better distributional fit
- Similarly, Figure 10 shows the MDN had a higher log score in the majority of triangles in all environments.

Figure 10: Boxplots of (LogScore(MDN) – LogScore(Chain Ladder))

Over 50 (10 for AUSI) triangles

RESULTS — TOTAL RESERVE ESTIMATES

- MDN had better mean and dispersion estimates of total reserves than the Chain Ladder
- Also more accurate
 75% and 99.5%
 quantiles

AUSI PLOTS

- Comparing the MDN and Chain Ladder on the AUSI set
- Black line is the empirical mean (based on 10 triangles)
- MDN gives smooth, more accurate results

AUSI QUANTILES

- Looking at the 25% and 75% risk margins for the AUSI set
- Again, MDN gives smooth, accurate results

ROLLING ORIGIN MODEL VALIDATION

• Diagrams of the data partition into training, validation and testing sets

ROLLING ORIGIN 2

Partition used in fitting the final model

MDN LOSS FUNCTION

$$NLLLoss(\mathbf{X}, \hat{\mathbf{X}} | \mathbf{w}) = -\frac{1}{|\mathbf{X}|} \sum_{i,j:X_{i,j} \in Train} ln(f_{\hat{X}_{i,j}}(X_{i,j} | \mathbf{w}))$$

- Negative Log-Likelihood loss function for the MDN
- We often add an MSE term, helps the MDN give better central estimate, capture trends

QUANTITATIVE METRICS

- RMSE: Calculated for incremental claims and for total reserves
- Log Score: Calculated for incremental claims
- Quantile Scores: Calculated for incremental claims and total reserves

$$RMSE(\mathbf{X}, \hat{\mathbf{X}}) = \sqrt{\frac{\sum_{(i,j):X_{i,j} \in \mathbf{X}} (X_{i,j} - \hat{X}_{i,j})^2}{|\mathbf{X}|}}$$

$$RMSE(\mathbf{R}, \hat{\mathbf{R}}) = \sqrt{\frac{\sum_{i=1}^{D} (R_i - \hat{R_i})^2}{D}}$$

$$LogScore(\mathbf{X}, f_{\hat{\mathbf{X}}}) = \frac{\sum_{(i,j): X_{i,j} \in \mathbf{X}} ln(f_{\hat{X}_{i,j}}(X_{i,j}))}{|\mathbf{X}|}$$

$$QS(\hat{X}_{q}, \mathbf{X}) = \frac{\sum_{(i,j): X_{i,j} \in \mathbf{X}} (1(X_{i,j} < \hat{X}_{i,j,q}) - q)(\hat{X}_{i,j,q} - X_{i,j})}{|\mathbf{X}|}$$

$$QS(\hat{R}_q, \mathbf{R}) = \frac{\sum_{i=1}^{D} (1(X_{i,j} < \hat{X}_{i,j,q}) - q)(\hat{X}_{i,j,q} - X_{i,j})}{D}$$

CHOSEN MODELS

Environment	Model	λ_w	λ_{σ}	p	n	h	K
1	MDN	0	0.0001	0	60	4	2
1	ResMDN	0.001	0	0.1	100	1	5
2	MDN	0	0.0001	0.2	100	3	1
2	ResMDN	0	0	0	40	3	1
3	MDN	0	0*	0	80	3	4
3	ResMDN	0	0	0.1	60	2	1
4	MDN	0	0.0001	0.1	60	4	3
4	ResMDN	0	0	0.1	20	3	3
AUSI	MDN	0	0	0.2	100	2	4

Table A: The most accurate model design yielded by the algorithm listed in Section 3.2. λ_w represents the L2 weight regularisation coefficient, λ_σ represents the L2 activity regularisation coefficient on the σ output, p is the dropout rate, n is the number of neurons in each hidden layer, h is the number of hidden layers and K is the number of components in the mixture density. *see Appendix D

QUANTITATIVE RESULTS: INCREMENTAL CLAIMS

Environment	Model	Mean RMSE	RMSE (% of ccODP)	Mean LS	Mean QS (75%)	Mean QS (99.5%)
1	ccODP	1,695.0	100	-8.09	386.1	30.9
1	MDN	1,527.5	90.1	-8.03	375.4	23.1
1	ResMDN	1,766.6	104.2	-8.31	434.3	57.05
1	ResMDN-PC	1,697.2	100.1	-8.24	386.4	30.2
2	ccODP	52,168.8	100	-12.94	10,065.7	359.0
2	MDN	18,150.7	34.8	-11.53	5,281.3	222.1
2	ResMDN	36,862.6	70.7	-13.54	6,888.2	596.4
2	ResMDN-PC	39,734.1	76.2	-13.57	7,048.5	260.6
3	ccODP	16,778.8	100	-11.35	5,419.7	1,385.5
3	MDN	13,223.8	78.8	-10.83	4,141.4	307.9
3	ResMDN	15,937.0	95.0	-11.60	4,667.5	655.8
3	ResMDN-PC	16,030.3	95.5	-11.27	4,861.6	1,012.3
4	ccODP	1,272,623.9	100	-15.54	259,273.4	36,199.6
4	MDN	$657,\!283.5$	51.6	-14.02	$214,\!133.5$	23,782.9
4	ResMDN	1,274,700.9	100.2	-18.54	258,145.7	37,902.0
AUSI	ccODP	-	100	-14.04	124,976.3	19,324.8
AUSI	MDN	-	84.2	-13.07	105,559.9	12,001.0

Table 1: The average score, over 50 triangles, of each quantitative metric; the RMSE, log score (LS) and quantile scores (QS) for the 75% and 99.5% levels. The MDN outperformed the ccODP in all environments and metrics when the average is taken.

QUANTITATIVE RESULTS: TRIANGLES OUTPERFORMED

Environment	Model	RMSE	Log Score	Quantile Score (75%)	Quantile Score (99.5%)
1	MDN	80	80	62	92
1	ResMDN	34	6	60	64
2	MDN	100	100	100	100
2	ResMDN	100	36	100	42
3	MDN	100	96	100	100
3	ResMDN	80	62	90	88
4	MDN	92	96	82	76
4	ResMDN	8	6	54	40
AUSI	MDN	100	100	100	70

Table 2: The percentage of triangles in which the MDN outperformed the ccODP in that specific metric.

QUANTITATIVE RESULTS: TOTAL RESERVES

Environment	Model	RMSE (×100,000)	$QS(75\%) (\times 10,000)$	$QS(99.5\%) (\times 10,000)$
1	MDN	1.12	3.72	0.40
1	ResMDN	4.21	11.26	8.73
1	ccODP	0.92	2.87	0.55
2	MDN	92.6	228.5	49.2
2	ResMDN	111.1	257.5	54.2
2	ccODP	238.8	601.6	125.0
3	MDN	26.1	129.5	109.5
3	ResMDN	39.1	169.6	154.2
3	ccODP	61.4	431.7	529.0
4	MDN	807.0	$2,\!098.7$	602.7
4	ResMDN	3,871.0	6,972.5	1,534.0
4	ccODP	3,823.7	6,802.6	1,506.4

Table 3: The RMSE and quantile scores (QS) at the 75% and 99.5% levels, calculated for total reserve estimates, \hat{R} . The ccODP outperforms for Environment 1, but the MDN outperforms otherwise.