Less is More: Including
Network Features for
Insurance Fraud
Detection — A Case
Study for a Belgian
Insurance Company
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THE NEED FOR NETWORK ANALYSIS
 Networks are a natural representation of many real-world phenomena

 Many actuarial problems can be formulated with networks, with
applications in:

* Pricing <
- Reserving i k
* Fraud detection Se”ST

Policy
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Drives
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The policy holder The counterparty(ies)

Covers

The driver
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THE NEED FOR NETWORK ANALYSIS IN FRAUD DETECTION

* Fraud detection done in two ways
- Rule-based
- Via machine learning

* Fraudsters adapt to this
- Cover their tracks
- New fraud methods
- Avoid business rules, and ML models trained on historical data

« Use of network to uncover otherwise hidden relations
« Much harder to blend in
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THE DIFFICULTIES WITH NETWORKS

- Data used in actuarial problems often comes in tabular format
- Machine learning methods are tailored to that

* Networks keep changing their structure
- Not clear how to capture this as a table

- Need to have as much network information as possible in tabular
format
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NETWORK EMBEDDING

« Definition:

- Given network G(V,E). Let d = 1 be the dimensionality of the
node/network embedding. A node embedding function f:V - R% is a
map that maps each node v € V to a real-valued feature vector in
R%, where d < |V].

 Intuitively:
* Translate network into latent Euclidean space (table)
- Capture as much network information in only a few features
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GENERAL POINTS OF ATTACK
* Need for network embeddings is clear

* Main questions remain
- Does network information improve the model?
- Does network information lead to novel insights?

 Done in via two approaches
- Model performance metrics
- Complementarity of the results
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THE DIFFERENT MODELS

« Construct different models
- Start with a base-line model with only intrinsic features
- Based on gradient boosting classifier from sklearn (Python)

- Add different network features and embeddings to original features
- Basic network features
* BiRank (guilt-by-association)
- Metapath2Vec (shallow representation learning)
- GraphSAGE (deep representation learning: graph neural network)
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BASIC NETWORK FEATURES

« Can be directly extracted from the network
- Based on neighbourhood and paths

- Highly interpretable
- Capture the importance of the nodes

- We base us on the following
- Degree
- Betweenness centrality
- Geodesic distance to itself
« Number of cycles
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OVERVIEW BASIC NETWORK FEATURES

Degree Betweenness Centrality
The number of connections Percentage shortest paths going through it

Information flow

Geodesic to Itself Number of Cycles
How closely/strongly related to itself Can be used to uncover fraud rings
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BIRANK

« Guilt-by-association algorithm for bipartite networks

« Incorporates fraud labels
- Let information flow through network
« Only set up for nodes of interest (claim/provider)

Aggregation of
neighbouring scores

- Mathematically:

Pl Wi ( 5 Prior belief based
C;i = CHE DI+ 1-— a{Ci on fraud labels
|C]
j = l
=\ did;
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BIRANK

 Iteration using matrix-vector multiplication
p=STc
c=aSp+ (1+ a)c’
- S is the rescaled adjacency matrix

- Important to avoid time-leakage
* Only use labels up to a certain point
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METAPATH2VEC

* Try to capture neighbourhood structure

« Does not use fraud data

- Takes meta-paths through network
- We say what is allowed and what not

« Paths are seen as sentences, with nodes our vocabulary
« Put into NLP to obtain the low-dimensional embedding

- Takes heterogeneity into account
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GRAPHSAGE
« Graph Neural Network

« Sample neighbours

« Aggregate from that sample

- Main Advantages
- Inductive: generalisable to unseen nodes
- Scalable: applicable on large graphs
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GRAPHSAGE

« Graph Neural Network
* hjy @y = AGGREGATE({hE™,vu € N(v)})
 h = o[ W { CONCAT(RE ™, h )

Non-linear Trainable weights
activation funtion

S
O A
1. Sample nelghborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information
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DATA SETS

- 2 data sets

- Real-world motor insurance data set from an insurance company
active on the Belgian market

- Open-source data set from Kaggle on health care providers

* The first is to have a feeling of the performance at a company

« The second is to enhance reproducibility and knowledge sharing
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DATA SETS

 Labels are highly imbalanced
- Motor insurance: 3% investigated and 0.3% overall fraud
- Health care providers: 9.4% labelled fraud

« Motor insurance has intrinsic features
- Used for the base-line model
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CONSIDERATIONS FOR BIRANK
* Need for bipartite graph

* Nodes of interest = group 1
 All other nodes = group 2
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CONSIDERATIONS FOR METAPATH2VEC

* Not allowing random walks
- Change to wander to much without going through node of interest

- Define meta-paths

- Motor
* P4:claim — contract — claim
* P,:claim — counterparty — claim
e P5:claim — broker — claim

- Health
* P;:provider — claim — provider
* P,:provider — claim — physician — claim — provider
* Ps:provider — claim — beneficiary — claim — provider
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CONSIDERATIONS FOR GRAPHSAGE
* No re-interpretation of the network

« Include feature data
- Motor: claim-specific data available
- Health: no data for providers, but data for patients and claims

 When no feature data, set feature equal to 1
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PERFORMANCE METRIC

* Three key metrics
- Area under the ROC curve
- Area under the precision-recall curve (average precision)
« Lift curve

« AUC is more widely known

« Average precision is preferred when dealing with (highly) skewed data

e Lift curve looks locally
- Important when putting model in production
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LIFT CURVE

* Looks locally
- At different levels, calculate the lift

 See how much more fraud is prevalent in top percentiles
 When put in production, only resources to investigate small part

- Example: Top 20%

- Red is real fraud OOOOOOOO‘OO

. Lift is 2.5 = 22

0.2 Lowest prediction Highest prediction
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COMPLEMENATIRY

« Study added value of network features
- Info not captured by intrinsic features

« Compare true positive between models
* Do this at different levels

Top 40%

- Example: ’ @@@@@

- Two models (red is real fraud) Alio

* Alice has 0% compl. to Bob e
- Bob has 50% compl. to Alice &) @@@®®
BI?(?west prediction Highest ﬁrediction
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BELGIAN MOTOR INSURANCE DATA SET

« Simple model: only intrinsic features

- All network features are added on top of those

AUC Average Precision
1.0 1 1.0 1 ——— Simple Model: 0.01
Simple Network Features: 0.013
0.8 - BiRank: 0.008
0.87 ' —— Metapath2Vec: 0.007
- GraphSAGE: 0.006
0.6 - 0.6 - —— Full Model: 0.01
0.4 - —— Simple Model: 0.738 0.4 1
Simple Network Features: 0.786
- BiRank: 0.745 02
0.2 7 —— Metapath2Vec: 0.748 '
——— GraphSAGE: 0.753
0.0- —— Full Model: 0.79 0.0 - %hi
OIO OI.2 OI4 016 0?8 1j0 0.0 0.2 0.4 0.6 0.8 1.0
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BELGIAN MOTOR INSURANCE DATA SET

- Simple model: only intrinsic features

- All network features are added on top of those

Lift Curve
—— Simple Model
71 Simple Network Features
- BiRank
6 1 —— Metapath2Vec
= GraphSAGE
5 1 - Full Model
4 .
3 -
2 .
14 —_—

0.2 0.4 0.6 0.8 1.0
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HEALTH CARE PROVIDER DATA SET
* No intrinsic features for health care providers

» Individual network models

AUC Avergage Precision
1.0 1.0 -~ —— Simple Network Features: 0.311
BiRank: 0.135
—— Metapath2Vec: 0.045
0.8 0.8 1 —— GraphSAGE: 0.186
0.61 0.6
0.4 1 0.4 -
0.2 —— Simple Network Features: 0.775 0.2 -
BiRank: 0.77
—— Metapath2Vec: 0.55

0.0 —— GraphSAGE: 0.654

T T T T T T 00 7

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
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HEALTH CARE PROVIDER DATA SET

* No intrinsic features for health care providers

» Individual network models

Lift Curve
—— Simple Network Features
BiRank
h —— Metapath2Vec
—— GraphSAGE
4 -
3 -
2 -
1 I —
0.2 0.4 0.6 0.8 1.0
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COMPLEMENTARITY

« Only relevant for the motor insurance dataset

S|mp|e BiRank Metapath2Vec
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Conclusion

Networks are a natural extension for
fraud detection in insurance

Vast variaty of methods available
* Guilt-by-association

« Shallow learners

« Graph Neural Networks

Complex methods are not necessarily
better methods

Network features uncover novel fraud
patterns
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