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THE NEED FOR NETWORK ANALYSIS

INTRO TO NETWORK ANALYSIS

• Networks are a natural representation of many real-world phenomena

• Many actuarial problems can be formulated with networks, with 
applications in:

• Pricing

• Reserving

• Fraud detection
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THE NEED FOR NETWORK ANALYSIS IN FRAUD DETECTION

INTRO TO NETWORK ANALYSIS

• Fraud detection done in two ways

• Rule-based

• Via machine learning

• Fraudsters adapt to this

• Cover their tracks

• New fraud methods 

• Avoid business rules, and ML models trained on historical data

• Use of network to uncover otherwise hidden relations

• Much harder to blend in
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THE DIFFICULTIES WITH NETWORKS

INTRO TO NETWORK ANALYSIS

• Data used in actuarial problems often comes in tabular format

• Machine learning methods are tailored to that

• Networks keep changing their structure

• Not clear how to capture this as a table

• Need to have as much network information as possible in tabular 
format
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NETWORK EMBEDDING

INTRO TO NETWORK ANALYSIS

• Definition:

• Given network 𝐺 𝑉, 𝐸 . Let 𝑑 ≥ 1 be the dimensionality of the 
node/network embedding. A node embedding function 𝑓: 𝑉 → ℝ𝑑 is a 
map  that maps each node 𝑣 ∈ 𝑉 to a real-valued feature vector in 
ℝ𝑑, where 𝑑 ≪ 𝑉 .

• Intuitively:

• Translate network into latent Euclidean space (table)

• Capture as much network information in only a few features
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GENERAL POINTS OF ATTACK

INTRO TO NETWORK ANALYSIS

• Need for network embeddings is clear

• Main questions remain

• Does network information improve the model? 

• Does network information lead to novel insights?

• Done in via two approaches

• Model performance metrics

• Complementarity of the results
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THE DIFFERENT MODELS

THE METHODS USED

• Construct different models

• Start with a base-line model with only intrinsic features

• Based on gradient boosting classifier from sklearn (Python)

• Add different network features and embeddings to original features

• Basic network features

• BiRank (guilt-by-association)

• Metapath2Vec (shallow representation learning)

• GraphSAGE (deep representation learning: graph neural network)
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BASIC NETWORK FEATURES

THE METHODS USED

• Can be directly extracted from the network

• Based on neighbourhood and paths

• Highly interpretable

• Capture the importance of the nodes

• We base us on the following

• Degree

• Betweenness centrality

• Geodesic distance to itself

• Number of cycles
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OVERVIEW BASIC NETWORK FEATURES

THE METHODS USED

Degree
The number of connections

Betweenness Centrality
Percentage shortest paths going through it
Information flow

Geodesic to Itself
How closely/strongly related to itself

Number of Cycles
Can be used to uncover fraud rings
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BIRANK

THE METHODS USED

• Guilt-by-association algorithm for bipartite networks

• Incorporates fraud labels

• Let information flow through network

• Only set up for nodes of interest (claim/provider)

• Mathematically:

𝑐𝑖 = 𝛼෍

𝑗=1

∣𝑃∣
𝑤𝑖𝑗

𝑑𝑖𝑑𝑗
𝑝𝑗 + 1 − 𝛼 𝑐𝑖

0

𝑝𝑗 = ෍

𝑖=1

∣𝐶∣
𝑤𝑖𝑗

𝑑𝑖𝑑𝑗
𝑐𝑖

Aggregation of 
neighbouring scores

Prior belief based 
on fraud labels
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BIRANK

THE METHODS USED

• Iteration using matrix-vector multiplication
𝒑 = 𝑆𝑇𝒄
𝒄 = 𝛼𝑆𝒑 + 1 + 𝛼 𝒄0

• 𝑆 is the rescaled adjacency matrix

• Important to avoid time-leakage

• Only use labels up to a certain point
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METAPATH2VEC

THE METHODS USED

• Try to capture neighbourhood structure

• Does not use fraud data

• Takes meta-paths through network

• We say what is allowed and what not

• Paths are seen as sentences, with nodes our vocabulary

• Put into NLP to obtain the low-dimensional embedding

• Takes heterogeneity into account
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GRAPHSAGE

THE METHODS USED

• Graph Neural Network

• Sample neighbours

• Aggregate from that sample

• Main Advantages

• Inductive: generalisable to unseen nodes

• Scalable: applicable on large graphs
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GRAPHSAGE

THE METHODS USED

• Graph Neural Network

• ℎ𝑁 𝑣
𝑘 = AGGREGATE ℎ𝑢

𝑘−1, ∀𝑢 ∈ 𝑁 𝑣

• ℎ𝑣
𝑘 = 𝜎 𝑾𝑘 ⋅ CONCAT ℎ𝑣

𝑘−1, ℎ𝑁 𝑣
𝑘

Trainable weightsNon-linear
activation funtion
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DATA SETS

THE DATA AND PERFORMANCE METRICS

• 2 data sets

• Real-world motor insurance data set from an insurance company 
active on the Belgian market

• Open-source data set from Kaggle on health care providers

• The first is to have a feeling of the performance at a company

• The second is to enhance reproducibility and knowledge sharing
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DATA SETS

THE DATA AND PERFORMANCE METRICS

• Labels are highly imbalanced

• Motor insurance: 3% investigated and 0.3% overall fraud

• Health care providers: 9.4% labelled fraud 

• Motor insurance has intrinsic features

• Used for the base-line model
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CONSIDERATIONS FOR BIRANK

THE DATA AND PERFORMANCE METRICS

• Need for bipartite graph

• Nodes of interest = group 1

• All other nodes = group 2
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CONSIDERATIONS FOR METAPATH2VEC

THE DATA AND PERFORMANCE METRICS

• Not allowing random walks

• Change to wander to much without going through node of interest

• Define meta-paths

• Motor
• 𝒫1: claim → contract → claim

• 𝒫2: claim → counterparty → claim

• 𝒫3: claim → broker → claim

• Health
• 𝒫1: provider → claim → provider

• 𝒫2: provider → claim → physician → claim → provider

• 𝒫3: provider → claim → beneficiary → claim → provider
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CONSIDERATIONS FOR GRAPHSAGE

THE DATA AND PERFORMANCE METRICS

• No re-interpretation of the network

• Include feature data

• Motor: claim-specific data available

• Health: no data for providers, but data for patients and claims

• When no feature data, set feature equal to 1
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PERFORMANCE METRIC

THE DATA AND PERFORMANCE METRICS

• Three key metrics

• Area under the ROC curve

• Area under the precision-recall curve (average precision)

• Lift curve

• AUC is more widely known

• Average precision is preferred when dealing with (highly) skewed data

• Lift curve looks locally

• Important when putting model in production
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LIFT CURVE

THE DATA AND PERFORMANCE METRICS

• Looks locally

• At different levels, calculate the lift

• See how much more fraud is prevalent in top percentiles

• When put in production, only resources to investigate small part

• Example:

• Red is real fraud

• Lift is 2.5 =
0.5

0.2
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COMPLEMENATIRY

THE DATA AND PERFORMANCE METRICS

• Study added value of network features

• Info not captured by intrinsic features

• Compare true positive between models

• Do this at different levels

• Example:

• Two models (red is real fraud)

• Alice has 0% compl. to Bob

• Bob has 50% compl. to Alice
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BELGIAN MOTOR INSURANCE DATA SET

THE RESULTS

• Simple model: only intrinsic features

• All network features are added on top of those 
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BELGIAN MOTOR INSURANCE DATA SET

THE RESULTS

• Simple model: only intrinsic features

• All network features are added on top of those
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HEALTH CARE PROVIDER DATA SET

THE RESULTS

• No intrinsic features for health care providers

• Individual network models



EAA e-Conference on Data Science & Data Ethics | 16 May 2023 | Page 31

HEALTH CARE PROVIDER DATA SET

THE RESULTS

• No intrinsic features for health care providers

• Individual network models
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COMPLEMENTARITY

THE RESULTS

• Only relevant for the motor insurance dataset

Simple BiRank Metapath2Vec

GraphSAGE

Full



Conclusion

• Networks are a natural extension for 
fraud detection in insurance

• Vast variaty of methods available
• Guilt-by-association
• Shallow learners
• Graph Neural Networks

• Complex methods are not necessarily 
better methods

• Network features uncover novel fraud 
patterns
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