	Concave ordering bounds	Tail risk measure bounds	A case study	References
000	00000	0000	000	

Ordered Risk Aggregation under Dependence Uncertainty

$\begin{array}{c} Yuyu \ Chen^1 \\ (\text{joint work with Liyuan Lin}^1 \ \text{and Ruodu Wang}^1) \end{array}$

¹Department of Statistics and Actuarial Science, University of Waterloo

IAA Joint Section Virtual Colloquium, October 2021

Introduction 000	Concave ordering bounds	Tail risk measure bounds 0000	A case study 000	References
Table of	f Contents			

2 Concave ordering bounds

3 Tail risk measure bounds

Introduction	Concave ordering bounds		A case study	References	
000					
Pick monsure					

Risk measure: Let \mathcal{M} be the set of cdfs on \mathbb{R} . A risk measure is defined as

 $\rho: \mathcal{M} \to \mathbb{R}.$

For $F \in \mathcal{M}$, if $X \sim F$, we also write $\rho(X) = \rho(F)$.

Examples: For $F \in \mathcal{M}$,

Left Value-at-Risk:

 $\operatorname{VaR}_q^L(F) = F^{-1}(q) = \inf\{t \in \mathbb{R} : F(t) \ge q\}, q \in (0, 1].$

• Right Value-at-Risk:

$$\operatorname{VaR}_{p}^{R}(F) = F^{-1}(p+) = \inf\{t \in \mathbb{R} : F(t) > p\}, p \in [0, 1)$$

Expected Shortfall:

$$\mathrm{ES}_p(F) = \frac{1}{1-p} \int_p^1 \mathrm{VaR}_u^R(F) \mathrm{d} u, p \in (0,1).$$

Range-VaR:

$$\operatorname{RVaR}_{p,q}(F) = \frac{1}{q-p} \int_{p}^{q} \operatorname{VaR}_{u}^{R}(F) \mathrm{d}u, 0 \leq p < q < 1.$$

Introduction	Concave ordering bounds	Tail risk measure bounds	A case study	References
0●0		0000	000	O
Depende	nce uncertainty			

Suppose that we have a portfolio of two risks \boldsymbol{X} and $\boldsymbol{Y}.$ We are interested in

 $\rho(X+Y).$

We assume:

- Known mariginal distributions;
- Uncertain dependence structure;
- Order constraint: $X \leq Y$ almost surely.

For $F, G \in \mathcal{M}$ such that F is stochastically smaller than G i.e., $F \ge G$, define the set

$$\mathcal{F}_2^o(F,G) = \{(X,Y) : X \sim F, Y \sim G, X \leqslant Y\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Concave ordering bounds			References
000	00000	0000	000	
D' L L	1			
Risk boi	unds with order o	constraint		

The worst-case and best-case values of $\rho(X + Y)$ over the set $\mathcal{F}_2^o(F, G)$ denoted by

$$\overline{\rho}(\mathcal{F}_2^o(F,G)) := \sup\{\rho(X+Y) : (X,Y) \in \mathcal{F}_2^o(F,G)\},\$$

and

$$\underline{\rho}(\mathcal{F}_2^o(F,G)) := \inf\{\rho(X+Y) : (X,Y) \in \mathcal{F}_2^o(F,G)\}.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

	Concave ordering bounds			References
000	00000	0000	000	
~				
Concave	order			
Concave				

A distribution F is called smaller than a distribution G in *concave order*, denoted by $F \leq_{cv} G$, if $\int \phi \, \mathrm{d}F \leq \int \phi \, \mathrm{d}G$ for all concave $\phi : \mathbb{R} \to \mathbb{R}$, provided that both integrals exist.

For a risk measure $\rho:\mathcal{M}\to\mathbb{R},$ we define three commonly used properties:

- A risk measure ρ is monotone if $\rho(F) \leq \rho(G)$ whenever $F \leq_{st} G$;
- A risk measure ρ is ≤_{cv}-consistent if ρ(F) ≤ ρ(G) whenever F ≤_{cv} G;
- A risk measure ρ is ≤_{cx}-consistent if ρ(F) ≤ ρ(G) whenever G ≤_{cv} F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The concave ordering bounds of X + Y?

Concave ordering bounds	Tail risk measure bounds	A case study	References
00000			

Concave ordering in unconstrained case

Concave ordering bounds of X + Y:

- A random vector (X, Y) is *comonotonic* if there exists a random variable U and two increasing functions f and g such that X = f(U) and Y = g(U) almost surely.
- A random vector (X, Y) is *countermonotonic* if (X, -Y) is comonotonic.
- It is well known that

$$X^{c} + Y^{c} \leq_{\mathrm{cv}} X + Y \leq_{\mathrm{cv}} X^{co} + Y^{co}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Countermonotonicity may violate the order constraint!

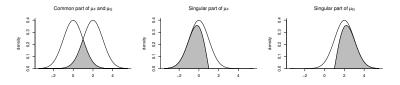
Introduction	Concave ordering bounds	Tail risk measure bounds	A case study	References
000	00●00	0000	000	O
DL cou	oling			

Directional Lower (DL) coupling: Arnold et al. (2020) and Nutz and Wang (2020)

Denote by μ_F and μ_G the Borel probability measures generated by continuous distributions F and G, respectively.

- The common part μ_F ∧ μ_G of F and G is the maximal measure θ such that θ ≤ μ_F and θ ≤ μ_G.
- The singular parts of F and G are defined as $\mu'_F = \mu_F \mu_F \wedge \mu_G$ and $\mu'_G = \mu_G \mu_F \wedge \mu_G$.

Figure: F = N(0, 1) and G = N(2, 1)



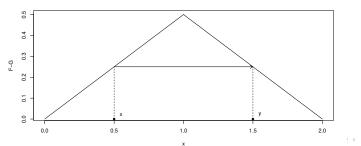
	Concave ordering bounds		A case study	References
000	00000	0000	000	
DL cou	oling			

The DL coupling between F and G has two parts.

- The common part of F and G couples identically with each other.
- The transport from the singular part of *F* to the singular part of *G*, denoted by $T^{F,G}$, is defined as

$$T^{F,G}(x) = \inf \left\{ z \geqslant x : F(z) - G(z) < F(x) - G(x) \right\}.$$

Figure:
$$F = \text{Unif}[0, 2]$$
 and $G = \text{Unif}[1, 2]$



F-G

Concave ordering bounds	Tail risk measure bounds	A case study	References
00000			

Concave orderings in constrained case

Lemma

For $(X, Y), (X^c, Y^c), (X', Y') \in \mathcal{F}_2^o(F, G)$ such that (X^c, Y^c) is comonotonic and (X', Y') is DL-coupled, we have

$$X^{c} + Y^{c} \leqslant_{\mathrm{cv}} X + Y \leqslant_{\mathrm{cv}} X' + Y'.$$

Corollary

Suppose that $(X, Y), (X^c, Y^c), (X', Y') \in \mathcal{F}_2^o(F, G)$ such that (X^c, Y^c) is comonotonic and (X', Y') is DL-coupled. If ρ is \leq_{cv} -consistent, then

$$\underline{\rho}(\mathcal{F}_2^o(F,G)) = \rho(X^c + Y^c) \leqslant \rho(X + Y) \leqslant \rho(X' + Y') = \overline{\rho}(\mathcal{F}_2^o(F,G)).$$

If ρ is \leq_{cx} -consistent, then

$$\underline{\rho}(\mathcal{F}_2^o(F,G)) = \rho(X'+Y') \leqslant \rho(X+Y) \leqslant \rho(X^c+Y^c) = \overline{\rho}(\mathcal{F}_2^o(F,G)).$$

Introduction 000	Concave ordering bounds	Tail risk measure bounds ●000	A case study 000	References
Tail risk	measures			

Let $F^{[p,1]}$ be the upper *p*-tail distribution of $F \in \mathcal{M}$, namely

$${\mathcal F}^{[p,1]}(x)=rac{({\mathcal F}(x)-p)_+}{1-p},\quad x\in{\mathbb R}.$$

Definition (Liu and Wang (2020))

For $p \in (0, 1)$, a risk measure ρ is a *p*-tail risk measure if $\rho(F) = \rho(G)$ for all $F, G \in \mathcal{M}$ such that $F^{[p,1]} = G^{[p,1]}$.

For a *p*-tail risk measure ρ , there always exists another risk measure ρ^* , called the generator, such that $\rho(F) = \rho^* \left(F^{[p,1]}\right)$. We call (ρ, ρ^*) a *p*-tail pair of risk measures.

Introduction	Concave ordering bounds	Tail risk measure bounds ○●○○	A case study 000	References O
<i>p</i> -conce	ntration			

p-concentration:

A *p*-tail event of a random variable X is an event A ∈ A with
0 < P(A) = 1 − p < 1 such that X(ω) ≥ X(ω') holds for all ω ∈ A and ω' ∈ A^c.

A random vector (X, Y) is *p*-concentrated if X and Y shares a common *p*-tail event of probability 1 - *p*.

Concave ordering bounds	Tail risk measure bounds	A case study	References
	0000		
1. 11. 1. I.			

Bounds on tail risk measures

DL coupling: $(X, Y) \sim D_*^{F,G}$.

Theorem

Suppose that $F \leq_{st} G$, $p \in (0, 1)$, (ρ, ρ^*) is a p-tail pair of risk measure, and ρ^* is monotone and \leq_{cv} -consistent. We have

$$\overline{\rho}(\mathcal{F}_2^o(F,G)) = \overline{\rho^*}\left(\mathcal{F}_2^o\left(F^{[p,1]},G^{[p,1]}\right)\right) = \rho^*(X+Y),$$

where $(X, Y) \sim D_*^{F^{[p,1]}, G^{[p,1]}}$.

The class of \leq_{cv} -consistent generators ρ^* :

• $\rho^* = \text{ess-inf}$, corresponding to $\rho = \text{VaR}_p^R$;

•
$$\rho^* = \mathbb{E}$$
, corresponding to $\rho = \mathrm{ES}_{\rho}$;

•
$$\rho^* : X \mapsto -\text{ES}_t(-X)$$
, corresponding $\rho = \text{RVaR}_{\rho,q}$, where $t = (1-q)/(1-p)$.

	Concave ordering bounds	Tail risk measure bounds	A case study	References
		0000		
N/ DI				

VaR bounds

Proposition

For continuous distributions F and G such that F $\leqslant_{\rm st}$ G and $p\in(0,1),$ we have

$$\overline{\operatorname{VaR}}_{p}^{R}(\mathcal{F}_{2}^{o}(F,G)) = \min\left\{\inf_{x \in [F^{-1}(p+1), G^{-1}(p+1)]} \left\{T^{F^{[p,1]}, G^{[p,1]}}(x) + x\right\}, 2G^{-1}(p+1)\right\},\$$

and

$$\underline{\operatorname{VaR}}_{p}^{L}(\mathcal{F}_{2}^{o}(F,G)) = \max\left\{\sup_{x \in [F^{-1}(p), G^{-1}(p)]} \left\{x + \hat{T}^{F^{[0,p]}, G^{[0,p]}}(x)\right\}, 2F^{-1}(p)\right\}$$

where $\hat{T}^{F^{[0,p]},G^{[0,p]}}(x) = \sup \left\{ t \leqslant x : F^{[0,p]}(t) - G^{[0,p]}(t) < F^{[0,p]}(x) - G^{[0,p]}(x) \right\}.$

Unconstrained problem: Rüschendorf (1982)

Proposition

Suppose that F and G are strictly increasing continuous distribution functions such that F $\leqslant_{\rm st}$ G. For $p\in(0,1),$ we have

 $\overline{\operatorname{VaR}}^L_p(\mathcal{F}^o_2(F,G)) = \overline{\operatorname{VaR}}^R_p(\mathcal{F}^o_2(F,G)) \quad \text{ and } \quad \underline{\operatorname{VaR}}^L_p(\mathcal{F}^o_2(F,G)) = \underline{\operatorname{VaR}}^R_p(\mathcal{F}^o_2(F,G)).$

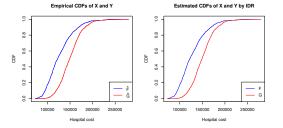
	Concave ordering bounds	Tail risk measure bounds	A case study	References		
000	00000	0000	000			
	$\Delta case study$					

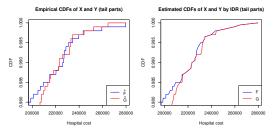
• The aggregate loss S = X + Y where $X \sim F$ and $Y \sim G$ represent the losses caused by females and males, respectively, from a portfolio of 50 males and 50 females

- $X \leq Y$ is reasonable due to many common risk factors
- Cannot reject the hypothesis $\hat{\mathcal{F}}\leqslant_{\mathrm{st}}\hat{\mathcal{G}}$
- Estimate F and G such that F ≤_{st} G using the isotonic distributional regression (Henzi et al. (2019))

Concave ordering bounds	A case study	References
	000	

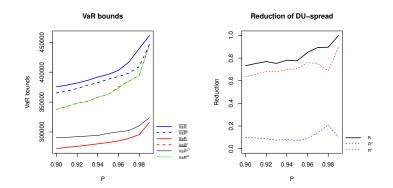
Numerical results





▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Introduction	Concave ordering bounds		A case study	References		
000	00000	0000	000			
NI 1 I.						
Numeric	al results					



◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Concave ordering bounds	Tail risk measure bounds	A case study	References

- Arnold, S., Molchanov, I. and Ziegel, J. F. (2020). Bivariate distributions with ordered marginals. *Journal of Multivariate Analysis*, **177**, 104585.
- Henzi, A., Ziegel, J. F. and Gneiting, T. (2019). Isotonic distributional regression. arXiv:1909.03725.
- Nutz, M. and Wang, R. (2020). The directional optimal transport. *Annals of Applied Probability*, forthcoming.
- Rüschendorf, L. (1982). Random variables with maximum sums. *Advances in Applied Probability*, 623–632.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

	Concave ordering bounds	Tail risk measure bounds	A case study	References
000	00000	0000	000	•

Chen, Y., Lin, L., and Wang, R. (2021). Ordered Risk Aggregation under Dependence Uncertainty. arXiv preprint arXiv:2104.07718.

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙