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Risk measure

Risk measure: Let M be the set of cdfs on R. A risk measure is defined as

ρ :M→ R.

For F ∈M, if X ∼ F , we also write ρ(X ) = ρ(F ).

Examples: For F ∈M,

Left Value-at-Risk:

VaRL
q(F ) = F−1(q) = inf{t ∈ R : F (t) > q}, q ∈ (0, 1].

Right Value-at-Risk:

VaRR
p (F ) = F−1(p+) = inf{t ∈ R : F (t) > p}, p ∈ [0, 1).

Expected Shortfall:

ESp(F ) =
1

1− p

∫ 1

p

VaRR
u (F )du, p ∈ (0, 1).

Range-VaR:

RVaRp,q(F ) =
1

q − p

∫ q

p

VaRR
u (F )du, 0 6 p < q < 1.
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Dependence uncertainty

Suppose that we have a portfolio of two risks X and Y . We are
interested in

ρ(X + Y ).

We assume:

Known mariginal distributions;

Uncertain dependence structure;

Order constraint: X 6 Y almost surely.

For F ,G ∈M such that F is stochastically smaller than G i.e., F > G ,
define the set

Fo
2 (F ,G ) = {(X ,Y ) : X ∼ F , Y ∼ G , X 6 Y }.
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Risk bounds with order constraint

The worst-case and best-case values of ρ(X + Y ) over the set Fo
2 (F ,G )

denoted by

ρ(Fo
2 (F ,G )) := sup{ρ(X + Y ) : (X ,Y ) ∈ Fo

2 (F ,G )},

and
ρ(Fo

2 (F ,G )) := inf{ρ(X + Y ) : (X ,Y ) ∈ Fo
2 (F ,G )}.
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Concave order

A distribution F is called smaller than a distribution G in concave order,
denoted by F 6cv G , if

∫
φdF 6

∫
φdG for all concave φ : R→ R,

provided that both integrals exist.

For a risk measure ρ :M→ R, we define three commonly used
properties:

A risk measure ρ is monotone if ρ(F ) 6 ρ(G ) whenever F 6st G ;

A risk measure ρ is 6cv-consistent if ρ(F ) 6 ρ(G ) whenever
F 6cv G ;

A risk measure ρ is 6cx-consistent if ρ(F ) 6 ρ(G ) whenever
G 6cv F .

The concave ordering bounds of X + Y ?
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Concave ordering in unconstrained case

Concave ordering bounds of X + Y :

A random vector (X ,Y ) is comonotonic if there exists a random
variable U and two increasing functions f and g such that X = f (U)
and Y = g(U) almost surely.

A random vector (X ,Y ) is countermonotonic if (X ,−Y ) is
comonotonic.

It is well known that

X c + Y c 6cv X + Y 6cv X co + Y co .

Countermonotonicity may violate the order constraint!
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DL coupling

Directional Lower (DL) coupling: Arnold et al. (2020) and Nutz and Wang
(2020)

Denote by µF and µG the Borel probability measures generated by continuous
distributions F and G , respectively.

The common part µF ∧ µG of F and G is the maximal measure θ such
that θ 6 µF and θ 6 µG .

The singular parts of F and G are defined as µ′F = µF − µF ∧ µG and
µ′G = µG − µF ∧ µG .

Figure: F = N(0, 1) and G = N(2, 1)
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DL coupling

The DL coupling between F and G has two parts.
The common part of F and G couples identically with each other.
The transport from the singular part of F to the singular part of G ,
denoted by T F ,G , is defined as

T F ,G (x) = inf {z > x : F (z)− G (z) < F (x)− G (x)} .

Figure: F = Unif[0, 2] and G = Unif[1, 2]
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Concave orderings in constrained case

Lemma

For (X ,Y ), (X c ,Y c), (X ′,Y ′) ∈ Fo
2 (F ,G) such that (X c ,Y c) is comonotonic

and (X ′,Y ′) is DL-coupled, we have

X c + Y c 6cv X + Y 6cv X ′ + Y ′.

Corollary

Suppose that (X ,Y ), (X c ,Y c ), (X ′,Y ′) ∈ Fo
2 (F ,G) such that (X c ,Y c ) is comonotonic and

(X ′,Y ′) is DL-coupled. If ρ is 6cv-consistent, then

ρ(Fo
2 (F ,G)) = ρ(X c + Y c ) 6 ρ(X + Y ) 6 ρ(X ′ + Y ′) = ρ(Fo

2 (F ,G)).

If ρ is 6cx-consistent, then

ρ(Fo
2 (F ,G)) = ρ(X ′ + Y ′) 6 ρ(X + Y ) 6 ρ(X c + Y c ) = ρ(Fo

2 (F ,G)).
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Tail risk measures

Let F [p,1] be the upper p-tail distribution of F ∈M, namely

F [p,1](x) =
(F (x)− p)+

1− p
, x ∈ R.

Definition (Liu and Wang (2020))

For p ∈ (0, 1), a risk measure ρ is a p-tail risk measure if ρ(F ) = ρ(G) for all
F ,G ∈M such that F [p,1] = G [p,1].

For a p-tail risk measure ρ, there always exists another risk measure ρ∗, called

the generator, such that ρ(F ) = ρ∗
(
F [p,1]

)
. We call (ρ, ρ∗) a p-tail pair of risk

measures.
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p-concentration

p-concentration:

A p-tail event of a random variable X is an event A ∈ A with
0 < P(A) = 1− p < 1 such that X (ω) > X (ω′) holds for all ω ∈ A
and ω′ ∈ Ac .

A random vector (X ,Y ) is p-concentrated if X and Y shares a
common p-tail event of probability 1− p.
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Bounds on tail risk measures

DL coupling: (X ,Y ) ∼ DF ,G
∗ .

Theorem

Suppose that F 6st G, p ∈ (0, 1), (ρ, ρ∗) is a p-tail pair of risk measure,
and ρ∗ is monotone and 6cv-consistent. We have

ρ(Fo
2 (F ,G )) = ρ∗

(
Fo

2

(
F [p,1],G [p,1]

))
= ρ∗(X + Y ),

where (X ,Y ) ∼ DF [p,1],G [p,1]

∗ .

The class of 6cv-consistent generators ρ∗:

ρ∗ = ess-inf, corresponding to ρ = VaRR
p ;

ρ∗ = E, corresponding to ρ = ESp;

ρ∗ : X 7→ −ESt(−X ), corresponding ρ = RVaRp,q, where
t = (1− q)/(1− p).
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VaR bounds

Proposition

For continuous distributions F and G such that F 6st G and p ∈ (0, 1), we have

VaR
R
p (F

o
2 (F ,G)) = min

{
inf

x∈[F−1(p+),G−1(p+)]

{
T F [p,1],G [p,1]

(x) + x

}
, 2G−1(p+)

}
,

and

VaR
L
p(F

o
2 (F ,G)) = max

 sup
x∈[F−1(p),G−1(p)]

{
x + T̂ F [0,p],G [0,p]

(x)

}
, 2F−1(p)

 ,

where T̂ F [0,p],G [0,p]
(x) = sup

{
t 6 x : F [0,p](t)− G [0,p](t) < F [0,p](x)− G [0,p](x)

}
.

Unconstrained problem: Rüschendorf (1982)

Proposition

Suppose that F and G are strictly increasing continuous distribution functions such that F 6st G.
For p ∈ (0, 1), we have

VaR
L
p(F

o
2 (F ,G)) = VaR

R
p (F

o
2 (F ,G)) and VaR

L
p(F

o
2 (F ,G)) = VaR

R
p (F

o
2 (F ,G)).
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A case study

The aggregate loss S = X + Y where X ∼ F and Y ∼ G represent
the losses caused by females and males, respectively, from a portfolio
of 50 males and 50 females

X 6 Y is reasonable due to many common risk factors

Cannot reject the hypothesis F̂ 6st Ĝ

Estimate F and G such that F 6st G using the isotonic
distributional regression (Henzi et al. (2019))
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Numerical results
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Numerical results
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Thank You!
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