

ulm university universität

Life reinsurance under perfect and asymmetric information

9th Ulm Actuarial Day | An Chen, Maria Hinken & Yang Shen | 12th October 2023

Motivation

- Default risk of life insurers, e.g., due to various forms of guaranteed payment to policyholders in life insurance contracts
- Various ways to hedge the default risk, e.g.:
 - Investment strategies (CPPI or OBPI)
 - Reinsurance to cover (partially) the default risk
- Possible advantages of reinsurance
 - Reinsurance companies have extensive expertise in navigating financial markets
 - Other risks arising from life insurance contract transferred to reinsurer (e.g. longevity risk)

Motivation

- ▶ Non-life reinsurance is widely used in practice and analyzed in academia
 - 2022: 51% of the gross premium income of Munich Re corresponds to non-life reinsurance (cf. Munich Re (2022), p.60)
 - Schmidli (2006), Shiu (2011), Asimit *et al.* (2015), Horáková *et al.* (2021), Zanotto & Clemente (2022), etc.
- Life reinsurance is becoming more emerging, but it is still in developmental stage
 - 2022: 20% of the gross premium income of Munich Re corresponds to life and health reinsurance (cf. Munich Re (2022), p.60)
 - Escobar-Anel et al. (2022): Reinsurance-investment problem under value-at-risk and no-short-selling constraint
 - Havrylenko et al. (2022): Reinsurance-investment problem modeled as a Stackelberg game
 - Chen et al. (2023): Information asymmetry in longevity risk transfer
- We focus on the impact of the insurer's portfolio risk on the reinsurance contract

Research questions and main findings

- Research questions
 - (a) What is the optimal reinsurance contract under full information?
 - (b) How does the insurer's investment strategy influences the optimal reinsurance contract?
 - (c) How does asymmetric information between the reinsurer and the insurer influence the optimal reinsurance contract?
- Main findings
 - (a) Optimal reinsurance is no, partial or full reinsurance depending on the default risk
 - $\rightarrow\,$ If the default risk is large enough, the insurer purchases reinsurance
 - (b) A higher investment strategy results in a higher reinsurance cover
 - (c) Additional information costs due to asymmetric information (higher reinsurance premium and lower reinsurance share)

Overview

Model

Payment structure of life and reinsurance contract Financial market and asset of insurer Preference measure of insurer Parameter selection for numerical analysis

Optimal reinsurance contract under full information

Optimization problem Numerical results

Optimal reinsurance contract under asymmetric information

Model for asymmetric information Optimization problem Numerical results

Conclusion

Model: Payment structure

Life insurance contract between insurer and policyholder

- Finite time horizon [0, T], $T < \infty$
- ▶ Initial asset value of the insurer: $A_0 = L_0 + E_0$
 - Initial contribution of policyholder $L_0 > 0$
 - Initial contribution of equity holder $E_0 > 0$
 - ▶ Initial premium share of policyholder $\alpha \in (0, 1)$, i.e., $L_0 = \alpha A_0$
- Asset value of insurer with initial asset value A_0 at time t: $A^{A_0}(t)$
- Benefits to policyholder are paid at maturity T by insurer
 - Insurer aims to offer a guarantee to the policyholder
 - Guaranteed interest rate $g \in (0, r]$ with r is the risk-free rate
 - \rightarrow Guaranteed payoff: $G_T = \alpha A_0 e^{gT}$

Model: Payment structure

Two possible cases:

(1) $A^{A_0}(T) \geq G_T$

- Insurer performs well
- ▶ Policyholder receives at least guaranteed payment G_T
- Surplus participation: $\delta(\alpha A^{A_0}(T) G_T)^+$ with $\delta \in [0, 1]$

(2) $A^{A_0}(T) < G_T$

- Insurer does not perform well
- ▶ Without external guarantor, the policyholder receives less than the guaranteed payment G_T
- \rightarrow Policyholder receives $A^{A_0}(T)$ and insurer has nothing left

Terminal payout to PH

$$\Psi(A^{A_0}(T)) = G_T + \delta(\alpha A^{A_0}(T) - G_T)^+ - \underbrace{(G_T - A^{A_0}(T))^+}_{\text{Default option}}$$

Model: Payment structure

Reinsurance contract between the insurer and the reinsurer

- Reinsurance premium $p \ge 0$ paid at time 0
- ▶ Default option $(G_T A^{A_0}(T))^+$ paid at maturity T
- ▶ Reinsurance share q ∈ [0, 1]: reinsurer covers 100 · q% of policyholder's default
- ► Insurer's initial asset value: a₀(p, q) := A₀-pq
- Insurer's terminal asset value

$$\tilde{A}^{a_0(p,q)}(T) := A^{a_0(p,q)}(T) - G_T - \delta C(\alpha A^{a_0(p,q)}(T)) + P(A^{a_0(p,q)}(T))$$

with C(S(T)) and P(S(T)) is call and put option with underlying S and strike price G_T

Policyholder's terminal payout

$$\Psi(A^{a_0(p,q)}(T)) = G_T + \delta C(\alpha A^{a_0(p,q)}(T)) - (1-q)P(A^{a_0(p,q)}(T))$$

Financial market

$$dS_0(t) = rS_0(t)dt$$

$$dS_1(t) = S_1(t)(\mu dt + \sigma dW(t))$$

with W Brownian motion on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P})$, $\mu > r$ expected return of risky asset and $\sigma > 0$ volatility of risky asset

- Investment strategy of insurer given by constant $\pi \in (0,1]$
- Insurer's asset value with initial value a₀(p, q) and investment strategy π at time t

$$egin{aligned} & d\mathcal{A}^{\mathfrak{a}_0(p,q),\pi}(t) = \mathcal{A}^{\mathfrak{a}_0(p,q),\pi}(t)((r+\pi(\mu-r))dt+\pi\sigma dW(t)) \ & \mathcal{A}^{\mathfrak{a}_0(p,q),\pi}(0) = \mathfrak{a}_0(p,q) \end{aligned}$$

Model: Preference measure

Aim of insurer: maximize its mean-variance preference of its terminal asset value Ã^{a₀(p,q),π}(T) with respect to the reinsurance share

Objective

$$J(ilde{A}^{\mathsf{a}_0(p,q),\pi}(\mathcal{T})) := \mathbb{E}[ilde{A}^{\mathsf{a}_0(p,q),\pi}(\mathcal{T})] - rac{\gamma}{2} \mathcal{V}$$
ar $(ilde{A}^{\mathsf{a}_0(p,q),\pi}(\mathcal{T}))$

with $\gamma > 0$ describing the insurer's risk aversion.

Model: Parameter selection

Parameter	Notation	Value
Interest rate	r	0.9%
Drift coefficient for S_1	μ	6.6%
Diffusion coefficient for S_1	σ	21.6%
Initial asset value of insurer	A_0	100
Proportion of initial contributions of PHs	α	93%
Guaranteed interest rate	g	0.9%
Risk aversion parameter of insurer	γ	0.05
Profit-sharing parameter of insurer	δ	0.9
Time horizon	Т	20

Table: Parameter setting for numerical analysis

Full information: Optimization problem

- Reinsurer has full information about insurer's portfolio risk
- Reinsurance premium: given through financial fair price of default option

$$\rho = e^{-rT} \mathbb{E}_{\mathbb{Q}}[(G_T - A^{a_0(p,q),\pi}(T))^+]$$
(1)

where $\ensuremath{\mathbb{Q}}$ is the risk-neutral measure

Optimization problem

 $\sup_{q\in[0,1]}J(\tilde{A}^{a_0(p,q),\pi}(T)) \text{ s.t. (1) holds and } p\in[0,e^{-rT}G_T]$

- Optimal reinsurance share
 - ▶ Reinsurance premium: there exist function $h : [0, 1] \rightarrow [0, e^{-rT} G_T]$ s.t. p = h(q) (Implicit Function Theorem)
 - No closed-form solution available
 - Existence of optimal reinsurance share
 - Sufficient conditions under which unique optimal reinsurance share exists
 - Conditions under which optimal reinsurance share is continuous and increasing regarding insurer's investment strategy

Full information: Numerical analysis

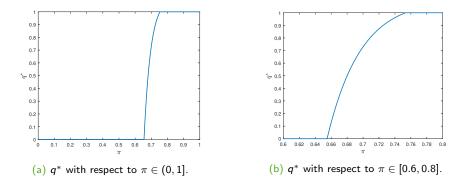


Figure: Optimal reinsurance share q^* with respect to investment strategy π .

Asymmetric information: Model

- Reinsurer has asymmetric information about insurer's portfolio risk
 - ▶ High-risk insurer (H) and low-risk insurer (L): $0 < \pi_L < \pi_H \leq 1$
 - ▶ Distribution of the types of insurers: $100 \cdot \varepsilon\%$ low-risk insurer with $\varepsilon \in (0, 1)$
 - Reinsurer does not know insurer's type, but the distribution of the types of insurers
- Reinsurer's expected profit resulting from reinsurance contract

$$\varepsilon EP_{R,L}(p,q_L) + (1-\varepsilon)EP_{R,H}(p,q_H)$$

- ► $EP_{R,i}(p,q_i) := \mathbb{E}[A_R^{q_ip,\pi_R}(T) q_i(G_T A_i^{a_0(p,q_i),\pi_i}(T))^+]$ is expected profit resulting from reinsurance contract with insurer of type $i \in \{L, H\}$
- A_R^{qp,π_R} denotes reinsurer's asset process with initial value qp and constant investment strategy π_R , and
- $A_i^{a_0(p,q_i),\pi_i}$ denotes asset process of insurer of type *i* with initial value $a_0(p,q)$ and investment strategy π_i

Asymmetric information: Optimization problem

Reinsurer offers only one reinsurance premium to both types of insurers

- Aim of reinsurer: maximize expected profit resulting from reinsurance contract
- Upper limit: $\overline{p} := e^{-rT} G_T$
- Lower limit: $\underline{p} := e^{-rT} \mathbb{E}_{\mathbb{Q}}[(G_T A_L^{A_0, \pi_L}(T))^+]$

Stackelberg game between the reinsurer and the insurer

$$\sup_{p \in [\underline{p}, \overline{p}]} \varepsilon EP_{R,L}(p, q_L^*(p)) + (1 - \varepsilon) EP_{R,H}(p, q_H^*(p))$$

s.t. $q_i^*(p) = \arg\max_{q_i \in [0, 1]} J(\tilde{A}_i^{a_0(p, q_i), \pi_i}(T)) \forall i \in \{L, H\}$

Asymmetric information: Optimization problem

Procedure of solving Stackelberg game

- 1. For every $p \in [\underline{p}, \overline{p}]$, insurer of type *i* selects optimal reinsurance share $q_i^*(p)$
- 2. Given the optimal response $q_i^*(p)$ of both types of insurers, reinsurer selects optimal reinsurance premium p^* .
- 3. Stackelberg equilibrium is given by $(p^*, q_L^*(p^*), q_H^*(p^*))$

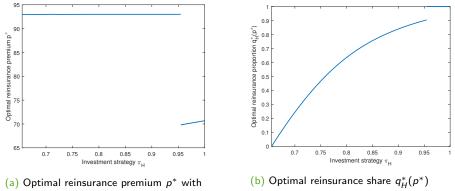
Stackelberg equilibrium

- No closed-form solution available
- Conditions under which a Stackelberg equilibrium exists
- Numerical analysis: Three different cases

1.
$$\pi_L < \pi_H < 65.49\% \Rightarrow q_L^*(p^*) = q_H^*(p^*) = 0$$

- 2. $\pi_L < 65.49\% \le \pi_H \Rightarrow q_L^*(p^*) = 0$ and $q_H^*(p^*) > 0$
- 3. 65.49% $\leq \pi_L < \pi_H \Rightarrow q_L^*(p^*), q_H^*(p^*) > 0$

Asymmetric information: Numerical analysis

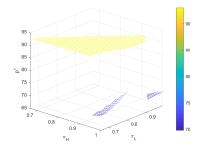


respect to π_H .

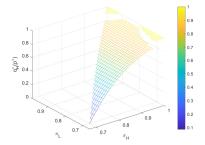
with respect to π_H .

Figure: Only high-risk insurer participates in reinsurance contract: $\pi_L < 65.49\%$ and $\pi_H \in [65.49\%, 100\%].$

Asymmetric information: Numerical analysis



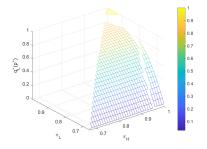
(a) Optimal reinsurance premium p^* with respect to π_L and π_H .



(b) Optimal reinsurance share $q_H^*(p^*)$ with respect to π_L and π_H .

Figure: Both types of insurers participate in reinsurance contract: $\pi_L \in [66\%, 99\%]$ and $\pi_H \in [67\%, 100\%]$ with $\pi_L < \pi_H$.

Asymmetric information: Numerical analysis



(c) Optimal reinsurance share $q_L^*(p^*)$ with respect to π_L and π_H .

Figure: Both types of insurers participate in reinsurance contract: $\pi_L \in [66\%, 99\%]$ and $\pi_H \in [67\%, 100\%]$ with $\pi_L < \pi_H$.

Conclusion

- Optimal life reinsurance under perfect and asymmetric information and impact of insurer's investment strategy on optimal reinsurance arrangement
 - Optimal reinsurance is (partial) reinsurance if investment strategy is large enough
 - Higher reinsurance cover if the portfolio risk increases
 - ► At least high-risk insurer prefers partial reinsurance ⇒ maximum reinsurance premium
 - High-risk insurer full reinsurance \Rightarrow lower reinsurance premium optimal
 - Asymmetric information leads to additional information costs (larger reinsurance premium and lower reinsurance share)
- Outlook
 - Reinsurer offers two different contracts to the two types of insurers (principal-agent model)

Thank you for your attention!

References I

- Asimit, Alexandru V, Chi, Yichun, & Hu, Junlei. 2015. Optimal non-life reinsurance under Solvency II Regime. *Insurance: Mathematics and Economics*, 65, 227–237.
- Chen, An, Li, Hong, & Schultze, Mark B. 2023. Optimal longevity risk transfer under asymmetric information. *Economic Modelling*, **120**, 106179.
- Cheung, Ka Chun, Yam, Sheung Chi Phillip, & Yuen, Fei Lung. 2019. Reinsurance contract design with adverse selection. *Scandinavian Actuarial Journal*, **2019**(9), 784–798.
- Escobar-Anel, Marcos, Havrylenko, Yevhen, Kschonnek, Michel, & Zagst, Rudi. 2022. Decrease of capital guarantees in life insurance products: can reinsurance stop it? *Insurance: Mathematics and Economics*, **105**, 14–40.
- GDV. 2022. Die deutsche Lebensversicherung in Zahlen 2022. Gesamtverband der Deutschen Versicherungswirtschaft e.V. (GDV).

References II

- Havrylenko, Yevhen, Hinken, Maria, & Zagst, Rudi. 2022. Risk sharing in equity-linked insurance products: Stackelberg equilibrium between an insurer and a reinsurer. *arXiv preprint arXiv:2203.04053*.
- Horáková, Galina, Slaninka, František, & Simonka, Zsolt. 2021. The reduction of initial reserves using the optimal reinsurance chains in non-life insurance. *Mathematics*, **9**(12), 1350.
- Milgrom, Paul, & Shannon, Chris. 1994. Monotone comparative statics. *Econometrica: Journal of the Econometric Society*, 157–180.

Munich Re. 2022. Group Annual Report 2022. Munich Re. https://www.munichre.com/content/dam/munichre/ mrwebsiteslaunches/2022-annual-report/ MunichRe-Group-Annual-Report-2022-en.pdf/_jcr_content/ renditions/original./MunichRe-Group-Annual-Report-2022-en.pdf.

References III

- Schmidli, Hanspeter. 2006. Optimisation in non-life insurance. Stochastic models, 22(4), 689–722.
- Shiu, Yung-Ming. 2011. Reinsurance and capital structure: Evidence from the United Kingdom non-life insurance industry. *Journal of Risk and Insurance*, **78**(2), 475–494.
- Westdeutsche Allgemeine Zeitung. 2022. Garantiezins deutscher Lebensversicherer für abgeschlossene Neuverträge von 1986 bis 2022. *Statista*. https://de.statista.com/statistik/daten/studie/167936/ umfrage/garantiezins-der-lebensversicherer-fuer-neuvertraege/.
- Yuan, Yu, Liang, Zhibin, & Han, Xia. 2022. Robust reinsurance contract with asymmetric information in a stochastic Stackelberg differential game. *Scandinavian Actuarial Journal*, **2022**(4), 328–355.

References IV

Zanotto, Alberto, & Clemente, Gian Paolo. 2022. An optimal reinsurance simulation model for non-life insurance in the Solvency II framework. *European Actuarial Journal*, **12**(1), 89–123.