

It is all about Pandemic(s)?

- New insights in Mortality and Longevity -

Achim Regenauer, Partner Re

About the speaker

Dr. Achim Regenauer - Chief Medical Officer, PartnerRe

1990-2016 Munich Re: Chief Medical Officer

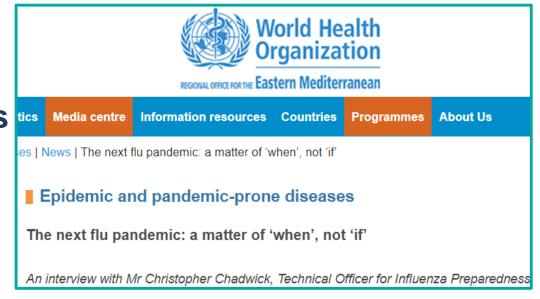
Since 2017 PartnerRe: Chief Medical Officer

Specialities Medicine: Genomics, Oncology, Epidemiology, Infections

Specialities Insurance: Underwriting, Products, Claims, Manuals, Hot &

Emerging Topics

Why this presentation?

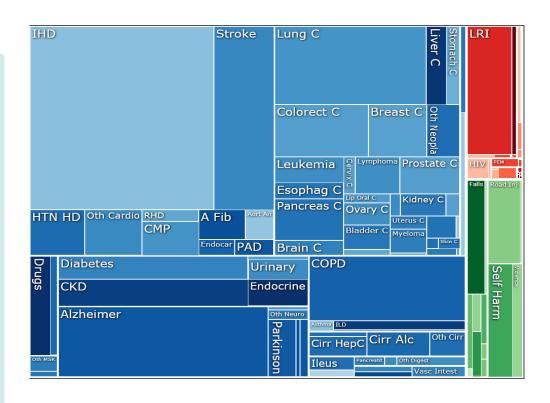

We do not want to accept unpleasant news to

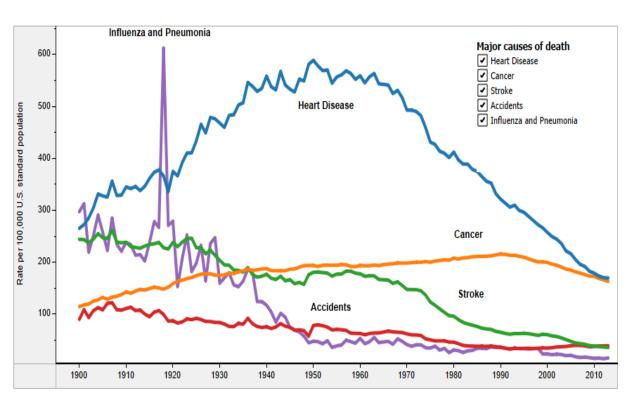
• WHO: there will be new **pandemics**: not if, but when!

Since 16th century, influenza pandemics at intervals btw. 10-50 years

2 Antimicrobial resistance (AMR) is an increasingly serious threat to global public health

What does one have to do with the other?

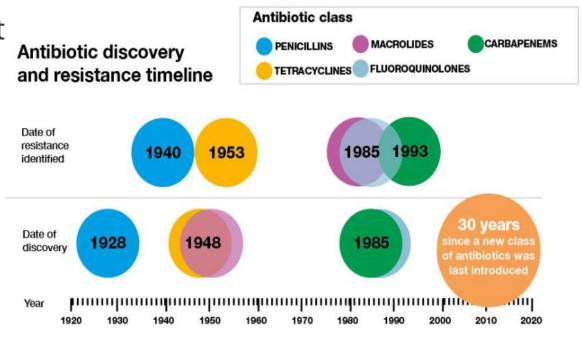

Source: http://www.emro.who.int/pandemic-epidemic-diseases/news



Causes of death – here USA

Infections are negligible?

Source: https://vizhub.healthdata.org/gbd-compare/


Infectious disease are loosing importance re Mortality improvements

Developing of Antibiotic Resistance

- Natural phenomenon (≈ Darwin's 'natural selection').
- Bacterial infections grow more resistant to antibiotics
- AMR nearly all antibiotics

Source_https://www1.compareyourcountry.org/antimicrobial-resistance/en/1/all/default

Every 100 years a big pandemic?

What is different now?

1919

Pandemic

- Used in context of influenza

2019

Source:Wikipedia

Source:https://en.wikipedia.org/wiki/COVID-19_pandemic

Pandemics during the last 100 years

21st century: a second player joins the recurrent pandemics

Source: https://www.who.int/emergencies/diseases/managing-epidemics-interactive.pdf

Do current pandemic models take this into account?

Characteristics of SARS & Influenza pandemic

What is different now?

	SARS-CoV2	SARS-CoV1	Spanish Flu	Swine flu	How efficacious is SARS-CoV2
Year	2019 & 2020 & ??	2003	1918 &1919	2009 (1957,1968)	
Transmission pattern (Ro)	Clustering 2.5	? 2.4	Homogeneous 2	Homogeneous 1.7	Highest
Incubation (d)	4-12	2-7	?	2	Longer hidden
Onset to max. infectivity (d)	0	5-7	2	2	Immediate – harder to contain
Proportion Asymptomatic/ mild	> 80%	Low	High	High	Facilitates unde- tected transm.
Immunity	None	None	None	Partial	
Mortality	0.5-58/100,000 pop. Total: 0,7 Million	CFR 9% Total >8,000 cases	2.5% population Total: 50 -100 Million	0.04% population Total: 151,700 - 575,400 cases	SARS-CoV-2 ranking 2 nd – in progress!
Proportion death of young (<65)	0.6-2.8%	?	95%	80%	

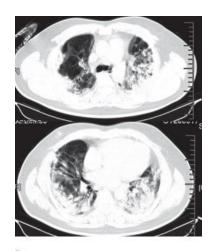
August 13, 2020

Mid-term: Not only Influenza but also Corona pandemics to be expected

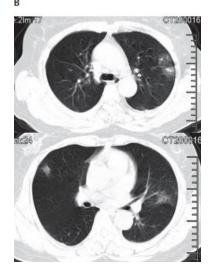
COVID-19: Medical Features

Unfortunately unspecific! Sudden loss of Smell/Taste **Fever** Headache Incubation ! **Fatigue Recovery?** Dry cough **Dyspnea** Pneumonia (Respiratory failure) (Septic shock). Diarrhea Muscle pain

Mild course > 80%,


Moderate course ≈ 15%,

Severe course ≈ 5%


Treatment of COVID-19

By now supportive care for Sepsis and Acute Respiratory Distress Syndrome only

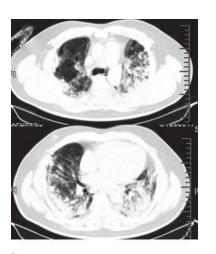
- Oxygen
- Sedation
- Artificial respiration (Bottleneck!)
- Dexamethason
- Remdesivir
- Antibiotics: presumptive/confirmed bacterial coinfection

Antiviral drugs??

Antibiotics ??

Source: Lancet 2020; 395: 497-506

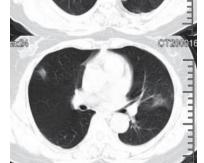
Treatment of COVID-19


Paucity of data

9 studies:

- 8% cases of bacterial/fungal co-infection
- 72-99% of COVID-19 cases antibacterial therapy
- Broad spectrum antibiotics, quinolone, cephalosporins, carbapenems

Source: Clin. Infect. Dis Rawson, T. M. et al. 2020


- 1. AMR spurred through overuse
- 2. ICUs are epicentres for AMR development

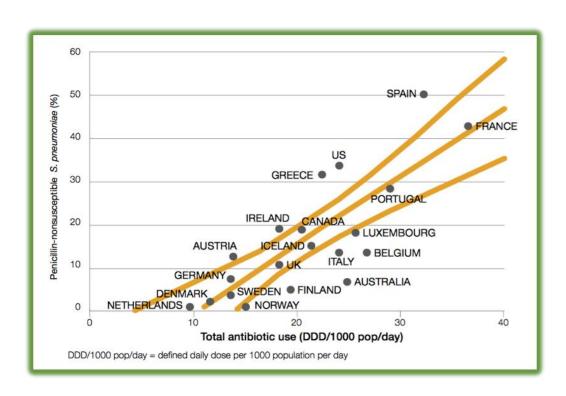
Antiviral drugs??

Antibiotics ??

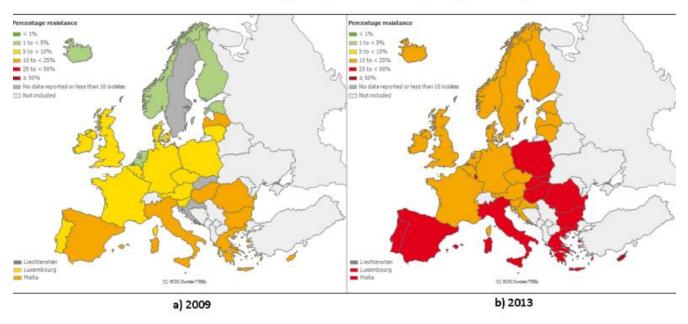
Source: Lancet 2020; 395: 497-506

COVID-19 death and Antibiotic Resistance

SARS-CoV-1: rate of methicillin-resistant *Staphylococcus aureus* (MRSA) 3.53% (−pre SARS period) → 25.3% (SARS period) ↑


	Number of known cases	Known cases per 100 000 population	Deaths	Deaths per 100 000 population
USA	1382362	421	83819	26
South Korea	11 037	21	262	0-5
Spain	230183	490	27459	58
Italy (Lombardy)	84119	841	5374	54
Germany	173 772	209	7881	9
UK	236715	353	33 998	51
South Africa	13524	23	247	0-4
ata taken from the V	VHO situation repo	ort on May 17, 2020. P	opulation dat	a from Eurostat.

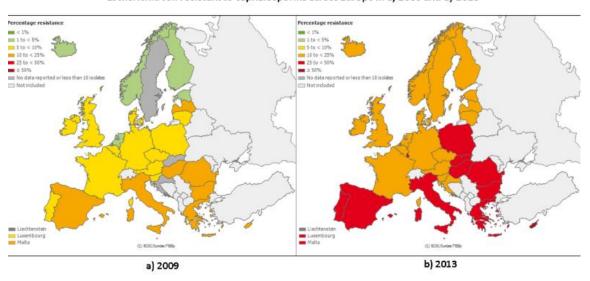
Source:Lancet Infect Dis 2020 July 3

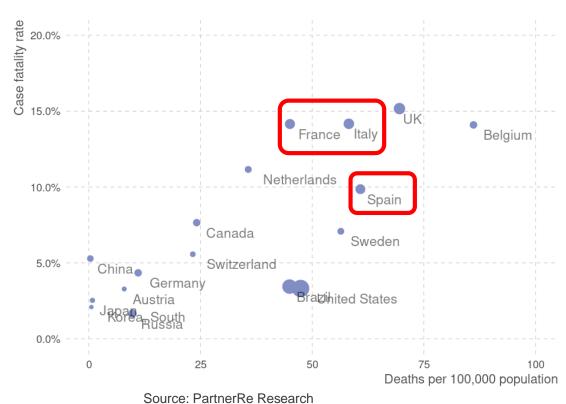

Antibiotic use and AMR

Here: Consumption of penicillin and E.coli/cephalosporins

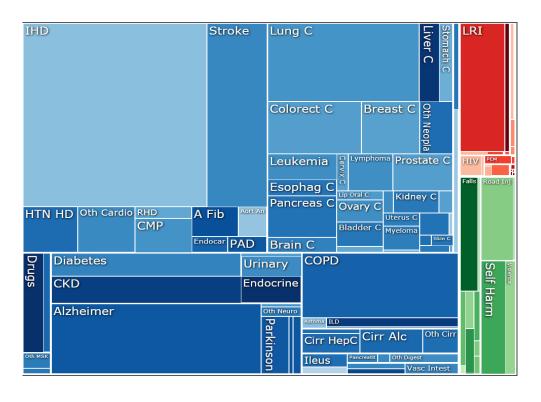
Overuse drives evolution of AMR

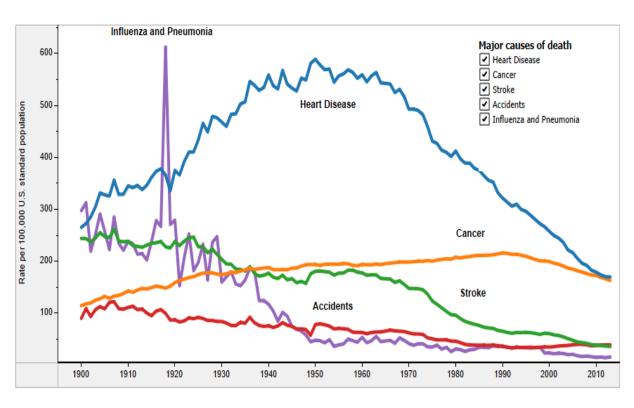
Source: https://publichealthmatters.blog.gov.uk/2015/10/23


Source: https://wwwnc.cdc.gov/eid/article/10/3/pdfs/03-0252.pdf


AMR and COVID-19

Here: E.coli/cephalosporins and CFR COVID-19



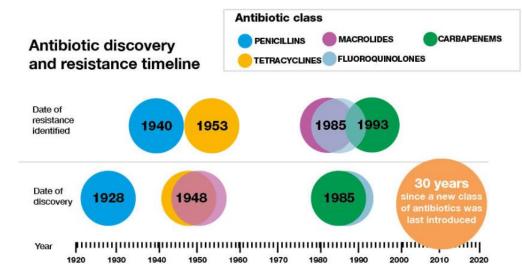

Source: https://publichealthmatters.blog.gov.uk/2015/10/23

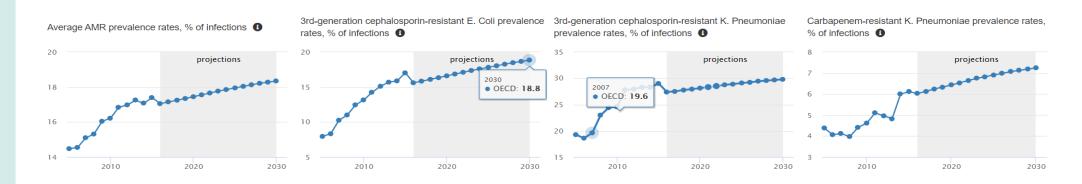
- 1. SARS-CoV-2 Mortality partially due to AMR
- 2. SARS-CoV2 pandemic adds more fuel to the fire of AMR

Resurgence of infections? Much more.....

With implications for mortality and longevity

Source: https://vizhub.healthdata.org/gbd-compare/

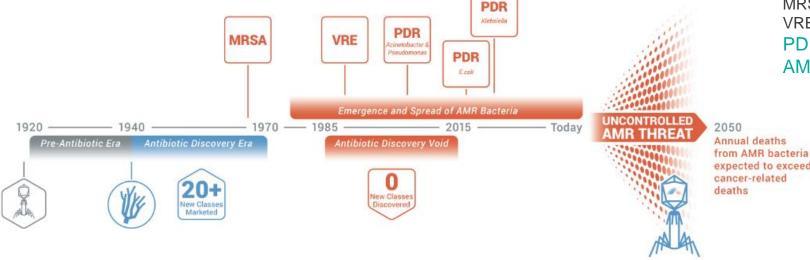

Infectious disease are gaining importance re Mortality shocks + Mortality improvements



2.

Developing of Antibiotic Resistance

- Natural phenomenon (≈ Darwin's 'natural selection').
- Bacterial infections grow more resistant to antibiotics
- AMR nearly all antibiotics


Source https://www.gov.uk/government/publications/health-matters-antimicrobial-resistance/health-matters-antimicrobial-resistance

Source_https://www1.compareyourcountry.org/antimicrobial-resistance/en/1/all/default

Developing of Antibiotic Resistance

MRSA: methicillin-resistant Staphylococcus aureus;

VRE: vancomycin-resistant enterococci;

PDR: pandrug-resistant;

AMR: antimicrobial resistance.

- Pharma companies are pulling out of antibiotics research
- Fewer new antibiotics approved
- Only 25% truly new
- None against Gram-negative bacteria (superbug infections)

Infections harder to control

aoc 2020

Hampered antibiotic prophylaxis

With implications for surgeries and cancer

Surgeries
Cancer chemotherapies
Transplantations
Diabetes

Births (Cesearean section)

30 25- 20- 20- 15- 5- 15- 5- 15- 7- 1

- All invasive procedures
 - Surgeries e.g. Appendectomy, Bypass
 - o Diagnostics: Biopsies, Heart catheter
- All diseases treated
 - o prophylactically
 - with immunosuppressive drugs
- Age dependent
 - o weakened immune system

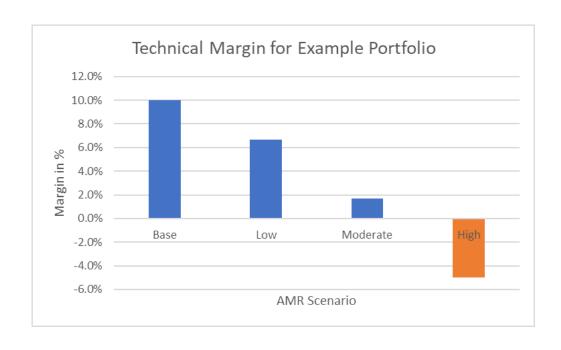
AMR will have significant implications on Mortality improvements and Mortality shocks

Source: www.thelancet.com/infection Vol 15 December 2015 Abs. risk reduction = N° annual infections/ N° procedures x efficacy of AB prophylaxis

Emerging double pandemic?

2.

- Treatment of resistant infections: harder,
 more expensive, impossible ?!
- Standard medical procedures more risky
- Next influenza/corona pandemic?
- ≈ 10 Million AMR deaths/year by 2050 Source: O'Neill Report (2016)


Economy and healthcare system?Life & Health (re)insurance?

Source: www.amr-review.org

Potential Impact of AMR on Life (Re-)Insurance

- Stress scenarios of an example portfolio of existing Life insurance (Death benefit)
- Estimated impact solely based on infections after chemotherapy
- Scenario assumptions (Base/Low/Moderate/High):

o Infection rate: 20%/30%/40%/50%,

Mortality due to

infection: 10%/20%/30%/40%

Source: PartnerRe L&H

Assumptions: 100 male policies with age distribution around age 40, Term 30 years, YRT premiums with 10% margin (base), 1% risk-free-rate; Mortality and cancer death rates by age from Japan, cancer fatality (w/o infections) at 25%, 75% probability to receive chemotherapy

With an infection rate of 40% and an infection mortality of 30%, the profits are mostly gone

But there is hope!

Alternatives to Antibiotics

- New forms of vaccines:monoclonal Ab
- Bacteriophages: GMO viruses infecting + destroying bacteria
- Probiotics
- Fecal transplants
- Nanotechnology-based coating sprays: antibiofilm surfaces

Assessment process:	Literature review Potential to deliver products			Industry expert MCDA Potential to reduce demand		Clinicians roundtable discussion Potential to impact on clinical use	Summary score Overall potential
Assessment parameter:							
Assessment criteria, or score:	In clinical Products in use pipeline		Targets priority pathogen (CDC list)	Score (max 27, min 6)	Assessment*	May reduce antibiotics demand	
Rapid point-of-care diagnostics	Yes	Yes	Yes	20.0	High	Yes	High
Vaccines	Yes	Yes	Yes	14.8	High	Yes	High
Probiotics	No	Yes	Yes	15.4	High	Yes	Medium
Fecal microbiota transplantation	No	Yes	Yes	15.0	High	Yes	Medium
Therapeutic antibodies	Yes	Yes	Yes	15.1	High	No	Low
Antimicrobial peptides	Yes	Yes	Yes	11.4	Low	No	Low
Antibiotic biomaterials	Yes	No	n.a.	12.4	Low	Yes	Low
Antimicrobial nanoparticles	Yes	Yes	No	8.0	Low	No	Low
Anti-virulence materials	No	No	n.a.	12.0	Low	No consensus	Low
Bacteriophages (and lysins)	No	Yes	Yes	8.8	Low	No	Low

Legend: "Yes" means a response in the affirmative for the criterion in any given the column heading, whereas "No" means that the criterion was not fulfilled *High potential technologies are those with a total score greater than the median of the total scores of the entire data set (13.4), where total score = (Time + Demand + Cost) x Confidence

Source: Nwokoro et al. Journal of Pharmaceutical Policy and Practice (2016) 9:34

• • • •

Take aways for Insurance

- 1. SARS-CoV-2 pandemic will be a big(ger?) one!
- 2. Pandemic models have to consider Influenza + Corona
- 3. AMR underreported and largely neglected
- 4. SARS-CoV-2 pandemic adds fuel to the fire of AMR (superimposed pandemic)
- 5. Implications for mitigated Mortality improvements beyond infections only (Longevity)
- 6. Life insurance products may be challenged
- 7. Increased awareness due to SARS-CoV-2

Thank you very much for your attention!

Contact details

Dr. Achim Regenauer

Partner Re

Achim.Regenauer@partnerre.com

0041 44 385 3425

https://partnerre.com/

https://www.linkedin.com/in/regenauer/