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The trend of improving longevity is erratically interrupted by mortality shocks.

Figure: Weekly, country-specific age-standardized death rates in 2019, 2020 and early 2021.
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The possibility of shocks is highly relevant for mortality modeling.

How much has COVID-19 influenced mortality in 2020?

significant excess mortality on a weekly and also yearly scale,
in terms of yearly mortality improvements, 2020 is among the worst 10 years for all countries in our data set.

How much impact does this have on the Lee-Carter model?

numerical example: decrease in annuity values of up to 9%, increase in life insurance values of up to 29%,
uncertainty related to forecasts strongly increases when taking 2020 into account.

How can extreme mortality events be handled?

outlier adjustment,
deviating from the normal distribution assumption for period effect increments.
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We consider data of 9 European countries to prove this empirically.

data sources: Human Mortality Database [2021, HMD] for yearly death
rates mi

x ,t = #(Deaths)
Exposure , Short Term Mortality Fluctuations [2021, STMF] for

weekly death counts D i
x ,t,w (age x , year t , population i , week w),

weekly STMF death counts are aggregated to obtain yearly data if these
are not available from the HMD

age groups x = [35, 39], [40, 44], . . . , [85, 89], 90+.

Table: Considered countries and available years.

Country Available years

Austria 1947–2020

Belgium 1900–2020

France 1900–2020

Germany 1956–2020

Italy 1900–2020

Poland 1958–2020

Spain 1908–2020

Sweden 1900–2020

Switzerland 1900–2020
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Excess mortality (at higher ages) is clearly visible on a weekly scale...

pi
x ,2020,w :=

D i
x ,2020,w − D̄ i

x ,2016:2019,w

D̄ i
x ,2016:2019,w

Figure: Weekly, country-specific excess death ratios
pi

x ,2020,w for different ages. Values above the zero line
(blue, dashed) indicate excess mortality.
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... and also on a yearly scale.

Polish males and Spanish
females have "lost" around
12 years of mortality
development in 2020,

German females have only
"lost" around 5 years,

improvement rates from
2019 to 2020 are among the
worst 10 observed for
almost every population in
our data set.

Figure: Yearly German,
Polish and Spanish
age-standardized death
rates between 2006 and
2020 for females (red,
solid), males (green,
dash) and the total
population (blue, long
dash).
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We analyze the impact of COVID-19 mortality on the Lee-Carter (LC) model...

Lee and Carter [1992]

log mi
x ,t = αi

x + β i
xκ

i
t + εi

x ,t

with
basic age structure of mortality αi

x ,
period effects κi

t ,
age effects β i

x ,
error terms εi

x ,t .
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... by comparing LC models calibrated on different scenarios (data sets).

1. Calibrate 2 LC models for evaluating the influence of a shock in the forecast jump-off year:
1991 to 2020 (real data)
1991 to 2019 (real data) ∪ LC-2019 estimate for 2020

2. Calibrate 2 LC models for evaluating the influence of a shock before the forecast jump-off year:
1992 to 2020 (real data) ∪ LC-2019 estimate for 2021
1992 to 2019 (real data) ∪ LC-2019 estimates for 2020 and 2021
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A shock in the jump-off year leads to a change in point and interval forecasts ...

κ̂2020 jumps upwards due to
the mortality shock,

using 2020 as the forecast
jump-off year, this leads to a
change in period effect drift
and, thus, point forecasts,

changes of up to 9% in
annuity values and up to 29%
in life insurance values,

95% prediction interval width
increases as well (more than
doubles in some cases).

Figure: Country-specific 30-year life insurance values for 35-year old males (based on point and interval death rate forecasts),
comparing an LC model trained on real data up to 2020 (blue triangle) and an LC model trained on real data up to 2019 and
2020 best estimates (red circle). Discount factor v = 1

1.005 .
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... while a shock before the jump-off year still leads to a change in interval forecasts.

we make the (unrealistic)
assumption that mortality
reverts to "normal" levels in
2021,

the 2020 shock has very little
influence on point forecasts if
2021 is used as the jump-off
year,

but interval forecasts still
widen substantially, by a
factor of up to 2.58 for the
annuity and up to 2.61 for
the term assurance.

Figure: Country-specific 30-year life insurance values for 35-year old males (based on point and interval death rate forecasts),
comparing an LC model trained on real data up to 2020 and 2021 best estimates (blue triangle) and an LC model trained on real
data up to 2019 and 2020/2021 best estimates (red circle). Discount factor v = 1

1.005 .
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There are several ways to treat mortality shocks in the modeling process.

random walk with drift (or more general ARIMA model), i.e., normal distribution assumption for the total yearly
log-mortality improvements (period effect increments) κ̂t+1 − κ̂t ,

remove 2020 death counts from the data / replace by best estimate / remove COVID-19 deaths,

outlier analysis and adjustment [Li and Chan, 2005, 2007],

deviate from the normal distribution assumption: lognormal distribution, mixture distribution, jump process, regime
switching.
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We consider a mixture distribution based on the peaks-over-threshold method.

Pickands-Balkema-de Haan: Under certain
conditions X |X > u, the excess value of a
random variable X over a threshold u, converges
in distribution to a generalized Pareto
distribution (GPD) as u →∞,

model κ̂t+1 − κ̂t with normal distribution
below u and GPD above u [Chen and Cummins,
2010],

choose u from a set of candidate values (high
quantiles) by profile likelihood maximization,

model calibration by penalized maximum
likelihood estimation.

Figure: Density of a mixture model for Switzerland (1900–2020), u = 0.005, µ = −0.282, σ = 0.227,
ξ = 0.094, θ = 0.395.

© Fraunhofer ITWM

4 October 2021 12



A jump model is a further alternative.

Chen and Cox [2009]

κ̂t+1 − κ̂t = d + et+1 + Nt+1Yt+1 − NtYt

with d ∈ R, et ∼ N
(
0, σ2

)
, Yt ∼ N

(
m, s2

)
and Nt ∼ B(1, p).

transitory jumps are modeled but longer shock phases are possible if Nt = Nt+1 = 1,

model calibration by conditional maximum likelihood estimation,

other distributions for the jump severity Yt are possible, for example Pareto (upward jumps)/Beta (downward jumps)
[Deng et al., 2012], which is inspired by the Kou and Wang [2004] option pricing model.
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Regime switching allows for transitions between a "normal" and a "shock" state.

Milidonis et al. [2011]

κ̂t+1 − κ̂t ∼

N

(
d1, (σ1)2) if ρt = 1

N
(
d2, (σ2)2) if ρt = 2

,

with binary Markov chain ρt .

model calibration via maximum
likelihood estimation,

initialization such that state 2 is the
shock state, i.e., we expect d2 > d1
and/or σ2 > σ1.

Figure: Regime switching model probability P (ρt = 1) for Spain, 1908–2020.
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Calibrating the non-shock parameters on a shorter time period improves forecasts.

originally, all model parameters calibrated
on the same data set, e.g., years 1900-2020,

but: LC assumes βx , d , σ constant over the
whole calibration period,

idea: calibrate only “shock parameters” on a
long time period and remaining LC
parameters on a shorter time period,

this approach clearly improves point
forecasts in a backtest.

Figure:
Relative
errors in
point
forecasts,
comparing
calibration on
1981–2010
(blue
triangles) or
all available
data (red
circles).
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The mixture distribution approach yields the best goodness of fit among “realistic” models.

goodness of fit measured by

BIC := −2 Lmax + log (nobs) · npar,

striking a balance between high likelihood and
parsimony,

intervention model has low BIC but ignores possibility of
events similar to COVID-19 in the future,

regime switching and jump model are strongly penalized
for their higher number of parameters,

mixture distribution approach (“pot”) works very well in
most countries.

Figure:
BIC for
models
calibrated
on data
from 1991
to 2020.
The black
dashed line
is at the
level of the
best-fitting
model.

© Fraunhofer ITWM

4 October 2021 16



A backtest shows that the normal distribution underestimates prediction uncertainty.

calibrate different models on yearly data from 1981
to 2010,
perform out-of-sample evaluation on data from
2011 to 2020,
point forecast errors measured by

MdAPE(t) := medianx ,i


∣∣∣∣m̂i

x ,t −mi
x ,t

∣∣∣∣
mi

x ,t

 · 100%

are similar and (plausibly) increasing over time,
interval forecast errors measured by

PICP(t) := 1
N

∑
x ,i
1{mi

x ,t∈[m̂i , lower
x ,t ,m̂i , upper

x ,t ]}

strongly depend on the model, with approaches
based on a normal distribution assumption heavily
underestimating prediction uncertainty.

Figure:
Relative
errors in
point
forecasts.

Figure:
Prediction
interval
coverage
probabilities.
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We have seen that mortality shocks have significant influence on the LC model and sketched
some ways how to deal with this.

Further research (or patience) is needed regarding the questions

how many COVID-19 deaths will be observed in the future and whether COVID-19 will cause new cohort effects due to
selection [Cairns et al., 2020],

how 2020, and possibly also 2021, mortality data should be treated in other mortality models,

how age-specific impacts of mortality shocks could be modeled as well.

For more details, see our preprint at ssrn.com/abstract=3835907.
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