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Abstract

The classical way to get an analytical model for the (supposedly heavy) tail of a loss severity
distribution is via parameter inference from empirical large losses. However, in the insurance practice
it occurs that one has much less information, but nevertheless needs such a model, say for reinsurance
pricing or capital modeling.

We use the Generalized Pareto distribution to build consistent underlying models from very scarce
data like: the frequencies at three thresholds, the risk premiums of three layers, or a mixture of both.
It turns out that for typical real-world data situations such GPD “fits” exist and are unique.

We also provide a scheme enabling practitioners to construct reasonable models in situations
where one has even less, or somewhat more, than three such bits of information.

Finally, we have a look at model risk, by applying some parameter-free inequalities for distribu-
tion tails and a particular representation for loss count distributions. It turns out that, in the data
situation given above, the uncertainty about the severity can be surprisingly low, such that the overall
uncertainty is driven by the loss count.

Keywords: Generalized Pareto, Heavy tail, Scarce data, Reinsurance, Premium rating

1 Introduction

1.1 Motivation
In theory, loss modeling in insurance should work like this: You have abundant loss data available, find a
parametric model that fits this data well, and do all the calculations you need with this model, using the
parameters estimated from the data. So, you get all output you need from the parametric distribution
model: moments, quantiles, TVaR, etc.

In practice instead, it occurs that the loss data are too scarce for this procedure, but nevertheless
the actuary is expected to produce the same outputs as if he/she had abundant data available. Again a
parametric model is needed, but its selection and parameter estimation are much harder now, as standard
procedures (best fit, parameter inference) give very volatile results or are not applicable at all. This occurs
e.g. when large losses have to be modeled for solvency matters or the premium rating of (re)insurance
layers, in particular when data from smaller losses are either not available or considered inadequate for
extrapolation into the large-loss area.

An illustrative example: Assume you have to model losses in a certain line of business, in the range
between 1 and 20 (say million USD), from a loss history of say 12 losses, which do fine for a Burning Cost
(BC, mathematically the sample mean) premium rating of a 2 xs 1 layer, but are insufficient to assess
higher layers. Further, for the layer 5 xs 5 there is e.g. a market benchmark BC rate (as is common for
Motor Liability in several countries) or a reliable risk premium estimate from a geophysical simulation
model for natural disasters (as is available for most Property lines in many countries). For higher loss
sizes you don’t have such benchmarks or don’t find them reliable, however, you may use a (possibly a bit
“political”, see Section 6.3.6.4 of Schwepcke (2004)) payback approach, i.e., you assign a return period of
say 200 years to the loss size 20 (million USD).

This is the challenge that we are going to explore in this paper: how to assign a consistent and
plausible model to (about) 3 bits of information, namely risk premiums of layers or loss frequencies at
thresholds. We will use the collective model with the Generalized Pareto distribution (GPD) as severity
model. That the GPD is a very reasonable model for losses exceeding a large threshold, is supported both
by theory (namely Extreme Value Theory and in particular the famous asymptotic properties found by
Pickands-Balkema-De Haan, see e.g. Embrechts et al. (2013)) and by widespread practical experience.
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1.2 Research context
There is not too much literature about how to build models from scarce data in a way other than
conventional parameter inference. Old and novel methods to fit the GPD in case of scarce data are
explored in Brazauskas and Kleefeld (2009) and related papers of the first author, however, they require
some dozen losses at least. Two recent papers are closely related to our work; both were notably written
by practitioners, both notably appeared in leading actuarial journals. Aviv (2018) proves that if for a
(limited) layer we have the risk premium, the loss frequency, and the frequency of total losses, then there
is one and only one Generalized Pareto model consistent with this information. This is a special case of
our main result below. Riegel (2018) constructs, for the same data input, a piecewise Pareto model (two
pieces) and develops procedures how to build an overall consistent model for a tower of n layers where
the risk premiums and (possibly) the frequencies at the attachment points are given, yielding a spliced
distribution consisting of about 2n Pareto pieces.

1.3 Outline
Section 2 explores the GPD, from memoryless properties over special cases and parameterizations to an
instructive map of the parameter space. Section 3 introduces compact layer notation, gives our main
result (the three-layer problem and its solution with the GPD), and discusses a number of variants and
applications, including proposals about what to do when one has a bit more, or less, than 3 data inputs.
Section 4 gives some non-parametric inequalities helping assess the model risk of layer losses. We will see
that the uncertainty about the severity distribution has in many cases a surprisingly low impact, possibly
less than the uncertainty about the loss count model. This justifies our choice to work with just one
severity distribution model instead of comparing a number of parametric models, as is usually done in
case of abundant loss data.

2 Generalized Pareto
Definition 2.1. The Generalized Pareto (distribution) = GP(D) is a model for severity distribution tails,
starting at a known threshold s ≥ 0. Note that s = 0 is possible and yields a ground-up model as we
may need it in some situations. The survival function (1 minus the cdf) in its common form (see e.g.
Embrechts et al. (2013)), reads

F̄Z (x | Z > s) =

((
1 + ξ

x− s
σ

)+
)− 1

ξ

, x ≥ s

where the shape parameter ξ may be any real number, while σ > 0.

For negative ξ the distribution has a finite supremum loss s + σ
−ξ . The (Exponential) case ξ = 0

results from taking the (well-defined) limit. For ξ ∈ (−∞, 1) we have finite expectation.
An important property of the GPD is that it is closed to (upward) threshold change: any tail distri-

bution F̄Z (x | Z > t) starting from a higher tail t > s is again GP (for ξ < 0: as long as t is lower than
the supremum loss), notably having the same exponent ξ. The second parameter shifts, instead: from σ
to σ + ξ (t− s) > 0. This is sometimes confusing, but the standard GP parameterization is convenient
for parameter inference and for the mathematics below; we will use it throughout most of this paper.

However, in order to get some intuition about the GPD, let us look shortly at alternative parame-
terizations. Some are indeed tail-shifting-invariant in both parameters and thus easier to interpret. For
details see Section 6.5 in Fackler (2017) and Sections 2-3 in Fackler (2013); here we give a brief account.

A variant of the classical GP parameterization replaces σ by the so-called modified scale (see e.g.
Scarrott and MacDonald (2012)) σ∗ = σ–ξs > –ξs. This yields

F̄Z (x | Z > s) =

(
ξs+ σ∗

(ξx+ σ∗)
+

) 1
ξ

, x ≥ s

and one sees quickly that the survival function of a higher tail looks the same; one just has to replace s
by the new threshold:

F̄Z (x | Z > t) =

(
ξt+ σ∗

(ξx+ σ∗)
+

) 1
ξ

, x ≥ t ≥ s
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So, the model “forgets” the original threshold. We can interpret the tail-invariant parameters ξ and σ∗
as geometric properties of the tail, no matter where this tail starts. They can help compare loss data and
possibly identify typical parameters for certain business. Say if we fit various data sets of large fire losses
with the GPD, no matter whether or not these sets have the same large-loss threshold, we can judge
how similar their tails are, by just comparing the respective inferred parameters ξ and σ∗. For this ease
of interpretation one has to pay with the somewhat complicate parameter space of the modified scale,
which extends a bit into the negative real numbers.

For further useful representations we treat three cases separately, according to the sign of the GP
exponent ξ.

2.1 Proper GPD
The case ξ > 0, which we call proper GPD, is largely considered the most interesting case for the insurance
practice. Here a parameterization proposed by Scollnik (2007) is most intuitive.

Set α := 1
ξ > 0, λ := ασ∗ = ασ − s > −s. Now we have

F̄Z (x | Z > s) =

(
s+ λ

x+ λ

)α
, x ≥ s

This representation is also tail-invariant and further extremely handy, revealing in particular a lot of
analogies to the single-parameter Pareto model, which is indeed the case λ = 0 or equivalently σ∗ = 0
(and requires a threshold s > 0). Pareto is the border of two proper-GP subclasses differing in terms of
the so-called local Pareto alpha (Riegel, 2008), which is the parameter of local approximations by Pareto
curves.

Definition 2.2. At any point d > 0 where a survival function F̄ (x) is positive and differentiable, such
that locally the pdf f (x) = −F̄ ′ (x) exists, we call

αd := − d

dt

∣∣∣∣
t=ln(d)

ln
(
F̄
(
et
))

= d · f (d)

F̄ (d)

the local Pareto alpha at d.

If αd is (about) constant on an interval, the distribution is (close to) Pareto on this interval. For
insurance losses one often observes that for very large d (say in the million Euro range) αd is a (slowly)
increasing function of d: in a way the tail, while being roughly similar to Pareto, gradually becomes
somewhat less heavy. As one sees quickly, in general in GP tails we have for d > s

αd =
d

σ + ξ (d− s)
=

d

σ∗ + ξd

For the proper GPD αd = d
d+λα, which tends to α as d becomes large. The specific behavior of αd as a

function of d is as follows:

• λ > 0: αd increases (as is often observed for large insurance losses)

• λ = 0: Pareto (s > 0)

• λ < 0: αd decreases (s > −λ > 0)

2.2 Power curve
For ξ < 0 the negatives of the above parameters α and λ are very intuitive, besides being tail-invariant.
Indeed we get with β := − 1

ξ > 0, ν := βσ + s > s the formula

F̄Z (x | Z > s) =

(
(ν − x)

+

ν − s

)β
, x ≥ s

which shows at a glance that this GP case is a piece of a shifted power curve having β as (positive)
exponent and ν as supremum loss (and center of the curve).
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Values ξ far below 0 should hardly appear in fits to insurance loss data: ξ = −1 yields the uniform
distribution between threshold and supremum, while for ξ < −1 the pdf increases, i.e., larger losses are
overall more likely than smaller losses, a rather unrealistic case. Yet not impossible: Section 4.1 of Aviv
(2018) gives examples of earthquake loss distributions from a common geophysical model, including one
having a rising pdf for a certain range of loss sizes, yielding a GPD fit with ξ well below −1.

The local Pareto alpha here always increases, rather quickly as is typical for not too heavy-tailed
distributions: we have αd = d

ν−dβ, which is an increasing and diverging (as d↗ ν) function in d.

2.3 Exponential
For ξ = 0 the parameters σ and σ∗ coincide, yielding the traditional and tail-invariant representation of
the Exponential distribution

F̄Z (x | Z > s) = exp

(
−x− s

σ

)
, x ≥ s

Here the local Pareto alpha is an increasing linear function: αd = d
σ

2.4 GPD map
To conclude, we illustrate the variety of properties the GPD can have, using the classical parameters ξ
and σ > 0. They span an open half-plane, which can be split in two parts by a half-line in four different
ways, see Figure 1:

• ξ = −1 (uniform): rising vs falling density

• ξ = 0 (Exponential): finite vs infinite support

• ξ = +1: finite vs infinite expectation

• ξs = σ (Pareto): rising vs falling local Pareto alpha

If s = 0, the last half-line falls out of the parameter space and coincides with the right half of the ξ axis,
such that there is no sector between the two where the local Pareto alpha would decrease.
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Figure 1: GPD areas
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3 Three-layer problems

3.1 Layers
We borrow notation and basic results for layers from Riegel (2018), generalizing a bit and introducing
particular sequences of layers.

Definition 3.1. A (re)insurance layer c xs a (c in excess of a) pays the part of each loss Z that exceeds
the attachment point a ≥ 0, up to a maximum c > 0 (cover, often called line or liability), which
mathematically means paying min ((Z − a)+, c).

We set b := a+c (detachment point) and often identify the layer with the corresponding interval [a, b],
0 ≤ a < b.

If e is the risk premium of the layer, we call r := e/c the risk rate on line (RRoL). If f is the expected
frequency of losses exceeding a (layer losses), and g the expected frequency of losses exceeding b, we must
have f ≥ r ≥ g, where equivalence is only possible in the (rather unrealistic) case that all ground-up
losses Z hitting the layer (Z > a) are total layer losses reaching even beyond the layer (Z > b). The
RRoL can be interpreted as the average loss frequency across the interval defining the layer.

We include two extremes. In case E (Z) < ∞, we allow c to be infinite (unlimited layer). Here we
have r = 0. On the opposite side, we admit b = a, i.e., c = 0 (!). Such a degenerate layer, shrunk to a
point, in practice does not make sense, but as a bit of information it does: Imagine an extremely thin
layer with b tending to a. Then e tends to 0, but r does not: it tends to f just as g does, yielding finally
the expected frequency at (the threshold) a.

Generally, a layer as an item of information is an interval 0 ≤ a ≤ b together with the nonnegative
figures e and r, which in case 0 < c < ∞ are tied by the formula r = e/c. If f > 0, e or r is positive (if
not both). The respective information provided by them is either the risk premium (for non-degenerate
= proper layers) or the expected loss frequency (for thresholds).

Hierarchy (order) of layers: We say that a layer [a1, b1] is lower than the layer [a2, b2] if a1 ≤ a2,
b1 ≤ b2, and one of the inequalities is strict. We then write [a1, b1] < [a2, b2]. Note that the lower and
the higher layer may overlap, which shall mean that they have a proper intersection (a2 < b1), not just
a common endpoint. Non-overlapping situations are e.g. [a1, b1] < [b1, b2], [a, b] < [b, b].

We call two ordered layers strongly ordered if they either do not overlap or have a1 < a2 < b1 < b2.
This just excludes the case that two proper layers have a common attachment or detachment point, such
that one would be an initial or final piece of the other one. Instead, [a, a] < [a, b] is a strong ordering. In
particular, in a sequence of strongly ordered layers only the highest one can be unlimited.

We finally introduce some particular sequences of ordered layers [ai, bi]: A sequence of layers is weakly
overlapping if the layers are ordered and overlap, if at all, only with adjacent layers, i.e., bi ≤ ai+2. A set
of non-overlapping layers can obviously always be arranged as a sequence of strongly ordered layers. In
particular, a tower of layers is an ordered sequence of non-overlapping (usually proper) layers attaching
exactly at each other, i.e., bi = ai+1.

Ordered layers and towers of layers are classics in the reinsurance practice and do appear in the
literature. For orientation we give a scheme of the intermediate kinds of ordering introduced here:

tower⇒ non-overlapping⇒
{

weakly overlapping⇒
strongly ordered⇒

}
ordered

Coming back to how layers are affected by losses, in the situation of two ordered layers we have f1 ≥ f2,
g1 ≥ g2, and notably r1 ≥ r2 (Riegel, 2018). In the tower case we have more strongly a decreasing
sequence of altering frequencies and RRoL’s:

f1 ≥ r1 ≥ g1 = f2 ≥ r2 ≥ g2 = f3 ≥ ...

Remark 3.2. One could alternatively define g as reflecting just the total layer losses (Z ≥ b) instead of
requiring that they properly exceed the layer detachment point (Z > b). For this variant the property
f ≥ r ≥ g holds as well, but g is greater than in the above definition in case the severity has a mass point
at b. Thus, for a tower of layers one would have

f1 ≥ r1 ≥ g1 ≥ f2 ≥ r2 ≥ g2 ≥ f3 ≥ ...

We will use this variant in Section 4, but for now stay with the original definition. It does fine for our
purposes and is easier to deal with, having in particular the convenient property mentioned above: if b
tends to a, g tends to f .
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3.2 Main result
Consider a loss severity having a GP tail starting at the threshold s ≥ 0, and a layer [a, b] being located
in the area of this tail, i.e., a ≥ s. If the expected loss frequency at s equals ϑ, we can express the risk
premium of the layer with the tail severity as follows (Riegel, 2018):

ϑ

bˆ

a

F̄Z (x | Z > s) dx = ϑ

bˆ

a

((
1 + ξ

x− s
σ

)+
)− 1

ξ

dx = ϑE (s, a, b, ξ, σ)

Here we have used a compact notation for the integral term:

Definition 3.3. For 0 ≤ s ≤ a < b = a+ c we write shortly

E (s, a, b, ξ, σ) :=

bˆ

a

((
1 + ξ

x− s
σ

)+
)− 1

ξ

dx

and analogously for the corresponding quantity per line

R (s, a, b, ξ, σ) :=
1

c

bˆ

a

((
1 + ξ

x− s
σ

)+
)− 1

ξ

dx

The latter formula (which emphasizes that the RRoL is the average of the loss frequencies ϑ F̄Z (x | Z > s)
over the layer interval) can be extended to the case a = b in a natural way, via

lim
b↘a

R (s, a, b, ξ, σ) =

((
1 + ξ

a− s
σ

)+
)− 1

ξ

If we relate the risk premiums of two layers to each other, the threshold frequency ϑ drops out; the
layer premium ratio depends only on integrals over the survival function. This is not specific to the GPD,
but holds generally for loss severities in the collective model. A great advantage of the GPD (besides
its theoretical and intuitive properties assembled above) is that it is essentially a power function, which
makes the calculation of integrals, limits, etc. very easy, yielding analytical formulae whose mathematical
properties are much easier to understand than when one has to involve numerical integration of complex
functions like Gamma, Beta, Gaussian, as they appear in other common parametric distributions (for an
overview see Appendix A of Klugman et al. (2008)).

In the following we need some quantities about a function that is formally similar to the survival
function of the GPD, but starts at infinite.

Definition 3.4. For 0 ≤ s ≤ a < b = a + c and ξ > 0 we define F̃ (x) := (x− s)−
1
ξ , x ≥ s and write

shortly

Ẽ (s, a, b, ξ) :=

bˆ

a

F̃ (x) dx =

bˆ

a

(x− s)−
1
ξ dx

and analogously for the corresponding quantity per line

R̃ (s, a, b, ξ) :=
1

c

bˆ

a

F̃ (x) dx

The latter formula, which gives the average of F̃ (x) over the layer, can be extended to the case a = b in
a natural way, via

lim
b↘a

R̃ (s, a, b, ξ) = F̃ (x)

We notably admit infinite values here; indeed F̃ (s) = ∞, while the integrals are infinite if a = s and
ξ ≤ 1, as well as (like for the GPD) if b =∞ and ξ ≥ 1.
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Remark 3.5. If 0 = s < a, Ẽ gives, up to a factor, the risk premium of the layer [a, b] for the single-
parameter Pareto model with α = 1

ξ (Riegel, 2008). We can thus interpret Ẽ and R̃ as reflecting risk
premium and RRoL of the shifted layer [a− s, b− s] for the Pareto model, plus a formal extension to the
case where the attachment point a− s equals 0.

An analogous formal extension was introduced by Riegel (2010): quasi exposure curves, a useful
generalization of exposure curves. The classical example is based on the function x−α being like Pareto
but starting at x = 0, which is a special case of the “quasi” survival function F̃ introduced above. Likewise,
the integrals Ẽ and R̃ based on F̃ will turn out to be very helpful for our topic.

Now we can formulate the task this paper is about.

Definition 3.6. The general three-layer problem is as follows: If we have three layers [ai, bi] with respec-
tive risk premiums ei and RRoL’s ri, is there a severity distribution consistent with this information?

Usually one deals with ordered layers [a1, b1] < [a2, b2] < [a3, b3]. Here the inequality r1 ≥ r2 ≥ r3

is a mathematical necessity and in practice mostly strict. Overlapping layers are a possibility, but most
real-world three-layer problems are about layers that do not overlap. This case can be largely solved with
the GPD, the results hold even for certain layer overlaps.

Theorem 3.7. Suppose you have got three strongly ordered and weakly overlapping layers [ai, bi] with
respective risk premiums ei and strictly decreasing RRoL’s r1 > r2 > r3 ≥ 0, such that for each layer
ri and/or ei is positive, namely the former for limited (possibly degenerate) layers, the latter for proper
layers (the top layer being possibly unlimited).

If there is a GP tail model starting at a1 that (together with a loss frequency at a1) yields the given
risk premiums and RRoL’s, this model is unique.

Now suppose more strongly that the given top and middle layer do not overlap. If the bottom layer is
a threshold and/or the top layer is unlimited, a matching GP tail model always exists. In the remaining
case (proper first layer, finite third layer) the existence depends on a technical condition that essentially
means that r2/r1 is not extremely small compared to r3/r2, as follows. Here for i = 1, 2 the functions

%i : (0,∞) 3 ξ 7→ R̃ (a1, ai+1, bi+1, ξ)

R̃ (a1, ai, bi, ξ)
∈ [0, 1)

are well defined and increasing; %2 is invertible with image (0, 1). The set of RRoL’s having an underlying
GPD is {

r1 > r2 > r3 > 0

∣∣∣∣ r2

r1
> %1

(
%−1

2

(
r3

r2

))}
Proof. We give a very short sketch of proof here, for the (many) technical details see Appendix B.

We only treat limited layers, the case of an unlimited third layer can (with some effort) be proved
analogously. Any GPD solving the problem must allocate some probability of loss to every layer, which
means that in case ξ < 0 the supremum loss must be greater than a3, or equivalently σ > −ξ (a3 − s).
We now work with s = a1.

Some (intricate but quite elementary) calculus shows that for fixed ai,, bi the mapping{
(ξ, σ) ∈ R2

∣∣∣σ > (−ξ (a3 − a1))
+
}
3 (ξ, σ) 7→

(
R (a1, a2, b2, ξ, σ)

R (a1, a1, b1, ξ, σ)
,
R (a1, a3, b3, ξ, σ)

R (a1, a2, b2, ξ, σ)

)
∈ (0, 1)× (0, 1)

is well-defined, locally invertible and continuously differentiable in both directions, and (globally) injec-
tive. Thus we have, if any, unique parameters ξ, σ such that the corresponding GP tail model starting
at a1 yields the given ratios r2/r1, r3/r2. Setting f1 = r1/R (a1, a1, b1, ξ, σ), we match the three given
RRoL’s.

More (intricate but quite elementary) calculus shows that for a non-overlapping top layer the mapping
is surjective if a1 = b1, whereas for a1 < b1 the image of the mapping is somewhat reduced by the above
technical condition.

As for the latter, a bit more calculus shows that the function

%1 ◦ %−1
2 : (0, 1)→ [0, 1)

equals 0 on the interval (0, %2 (1)], then increases strictly towards the limit 1. Thus, for r3
r2
≤ %2 (1) the

technical condition is fulfilled irrespective of r2r1 ; this yields a sufficient condition being easy to check. For
greater r3

r2
things are more complicated as one needs to invert %2 to verify the technical condition. How
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restrictive the latter is, depends on how long, and far from each other, the three layers are. However,
generally one can say that the technical condition is violated in situations where r2 is very close to r3

and at the same time much smaller than r1.

Translated into tail geometry, r1 � r2 ' r3 means that the loss severity is extremely heavy-tailed (in
the sense of very slow reduction of the loss probability for rising thresholds) in the area extending from
the second layer to the third, but much less so below. The GPD can cater for such situations to some
extent (via a decreasing local Pareto alpha, see Section 2.1), even much better than many other common
two-parameter loss models, it just misses certain extreme cases. Three-layer situations and RRoL inputs
as one typically sees them in practice, are mostly far from violating the technical condition.

Note that GP tail models starting at some lower threshold t < a1 cannot yield further solutions of
the three-layer problem – their upper tail starting at a1 would again be the unique GP tail model from
the theorem.

Let us illustrate some special three-layer problems, where some layers are thresholds, i.e., shrunk to
a point.

• If the top layer is a threshold, we have a situation like in the example given in the introduction.

• If all three layers are thresholds, we get the three-threshold problem. Here three given frequencies
f1 > f2 > f3 > 0 at thresholds 0 ≤ a1 < a2 < a3 are matched by a unique GPD, which always
exists as the first layer is a threshold.

• If bottom and top layer are thresholds that equal attachment and detachment point, respectively,
of the middle layer, we get the very particular tower of layers [a, a] < [a, b] < [b, b], which always
yields a solution. Here the risk premium and the frequencies at the endpoints of the layer are given
and fulfill f > r > g > 0. Let us call this the layer-endpoints problem. A direct proof of existence
and uniqueness of the matching GP model can be found in Aviv (2018), together with an example
(frequencies and RRoL’s from geophysical modeling software) illustrating how this can be used to
construct an analytical model for a tower of n layers: simply solve the layer-endpoints problem for
each of the layers according to the given input fi > ri > gi. This yields a piecewise GPD (n pieces).

Note that the theorem cannot be easily extended to straightforward bordering cases. In particular, it is
not difficult to see that the variant with a loss-free top layer/threshold (e3 = 0, r3 = 0) can lead to GP
solutions, but these are not unique. Solutions must have a supremum loss that be finite and not greater
than a3, i.e., ξ < 0 and a1 + σ

−ξ ≤ a3. To get uniqueness, the supremum loss has to be specified.
The uniqueness assertion of the theorem requires strongly ordered and weakly overlapping layers, but

this is not very restrictive as many three-layer problems for ordered layers can be equivalently reformulated
with such layers, by reducing overlaps like this: Say for the layers [a, b1] < [a, b2] with respective risk
premiums e1 and e2 we have e2 > e1 (this is necessary to have consistent input). Then we can replace the
larger layer by the “difference” of the two and work with the non-overlapping layers [a, b1] < [b1, b2] and
the respective risk premiums e1 and e2−e1. Any GP solution to the modified problem solves the original
problem, and vice versa. Analogously we can modify similar three-layer problems where two or three
layers have a common attachment or detachment point, even situations where the middle layer shares
the attachment point with the bottom layer and the detachment point with the top layer. However, for
a few situations this procedure does not help, in particular the following:

• In the situation a1 = a2 < a3 = b1 < b2 = b3 the middle layer is the non-overlapping union of
bottom and top layer, such that its risk premium must equal that of the other layers added up. So,
if the given risk premiums fulfill e2 = e1 + e3, the problem is consistently posed but insufficiently
specified (only two data points given), if e2 6= e1 + e3, the problem has inconsistent input and no
solution.

• If a1 < a2 < a3 < b1 < b2 = b3, the layers are ordered, but all three contain the proper interval
[a3, b1]. This overlap can by eliminated via replacing the second layer by [a2, a3]. But, now the
first and second layer are not ordered any more; this situation may have a (possibly even unique)
solution, but is not covered by the theorem. The same holds for the analogous situation a1 = a2 <
a3 < b1 < b2 < b3.
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3.3 How to use it
Now we turn to real-world applications, embracing cases where one has a bit more or less than three data
inputs of the kind discussed here: an ordered sequence of layers with risk premiums, or of thresholds with
frequencies, or a mixture of both, usually having few or no overlaps.

Let us start with the scarcest data. If one has less than three inputs, one better works with a simpler
tail model than the GPD. At least for reinsurers and their layer business having attachment points in the
million dollar range, the (single-parameter) Pareto distribution would usually be the preferred choice. In
many lines of business benchmarks for the parameter α are known, see e.g. Schmutz and Doerr (1998)
or Section 4.4.8 of FINMA (2006).

More importantly, Pareto solves various two-layer problems (defined analogously to the three-layer
problems studied above) for layers [a1, b1] < [a2,b2], ai > 0, yielding unique solutions. For two thresholds
this is a simple and well-known one-liner (see e.g. Riegel (2018)) yielding

α =
ln (r1/r2)

ln (a2/a1)

For two proper limited layers it is a classic in the reinsurance practice, for a strict proof see Riegel (2008)
– here layers may overlap, but must be ordered. The mixed situation (a proper layer and a threshold in
hierarchical order) can be proved analogously. For a detailed proof of the case [a1, a1] < [a2,b2] and for
cases with unlimited layers see Riegel (2018).

Now we give procedures for constructing a severity, according to the number of given data inputs.
Finding subsequently the correct frequency works as in the above sketch of proof of the theorem. We
focus on the case of proper layers; if some layers are thresholds, the procedures are similar or far simpler.

1: Use Pareto, choose α from market experience.

2: Use Pareto, calculate α numerically (two-layer problem).

3, tentative: Use the GPD, try to solve the three-layer problem numerically.
Instead of proceeding as in the proof of the theorem, one can attempt to find f1, ξ, σ in one step, by
solving the system of three equations ri = f1R (a1, ai, bi, ξ, σ) (for an unlimited top layer use instead
e3 = f1E (a1, a3,∞, ξ, σ) and restrict to ξ < 1). The uniqueness of the solution for the layer triples
treated in the theorem (and arguably some more), as well as practical experience, suggest that
this is not a hard numerical problem; choice of algorithm and start values are apparently not very
critical. As for the latter, for a1 > 0 one could start with say f̂1 = r1 and GP parameters ξ̂ = 1/α̂,
σ̂ = ξ̂a1 yielding a Pareto model, where α̂ is calculated from thresholds a1, a2 and frequencies r1,
r2.
Given the rather benign numerical setting, even in the case where a matching GPD does not always
exist, it is mostly quickest to let first a numerical algorithm look for a solution. Only if some
attempts fail, it makes sense to take the time and check the above technical condition for existence.

≥3, exact: Use a piecewise-GP model. Try first to solve the three-layer problem for the three highest
layers. (GP geometry is most plausible for high tails.) If this works, it yields a frequency at the
attachment point of the third highest layer. If that is smaller than the RRoL of the next layer below,
attach layer per layer downwards by solving the layer-endpoints problem for each of them. If not,
you have inconsistency, thus cannot use a common GPD for the three top layers. In this case and
generally if the upper three layers don’t yield a GP model, solve the three-layer problem for the top
layer, the second highest layer and the attachment point of the latter, choosing for the attachment
point a frequency between the RRoL’s of the adjacent layers; then use the layer-endpoints approach
for each of the layers below the upper two.
To apply the layer-endpoints procedure to a number of layers, one must split overlapping layers and
possibly add artificial layers (to close gaps between the given layers), choosing missing parameters
appropriately, in order to have a consistent “tower” of parameters

f1 > r1 > g1 = f2 > r2 > g2 = f3 > ...

where each layer can be treated separately, but overall one gets a consistent piecewise-GP model.

≥3, approximate: Use the GPD and solve the system of equations ri = f1R (a1, ai, bi, ξ, σ) approx-
imately, according to some deviation metric. In real-world situations one often gets surprisingly
close. To get start values, one could first solve the three-layer problem for a low threshold, the
highest and a further layer.
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This set of concepts should enable practitioners to build severity models in a large variety of situations
where the data are too scarce (or otherwise not suitable) for traditional parameter inference.

3.4 Numerical example
Consider the tower of layers (given in say million USD) and respective RRoL’s, as displayed in Table 1.

Table 1: Tower of layers
No. 1 2 3 4 (5)

Layering 2 xs 1 2 xs 3 5 xs 5 10 xs 10 20
RRoL [%] 52 13 4.8 1.3 0.5

The fifth layer is not a proper one, but a threshold with an assigned frequency. Let us go through
diverse situations where some of these five bits of information are given:

1. Layer 3 only. If we know from market experience that for the respective loss range between 5 and
10, in the respective business line in the respective country, distributions are typically similar to
Pareto with the parameter α in the range of 2, we can use that (vague) info, which specifies a model.

2. Layers 1, 3. This is a variant of the example given in the introduction. If we want to rely on the
two Layer premiums only, we calculate, as practitioners name it, the Pareto alpha between them
(Riegel (2008), Riegel (2018)), which specifies a model.

3. Layers 1, 3, 5. This is the example from the introduction. If we combine the two layer premiums
and the (possibly a bit politically set) large-loss frequency, we have specified a three-layer problem
and can look for a matching GP model, which indeed exists.
For comparison: If we, instead of 0.5%, chose a frequency of 2% at 20 (payback 50 years), there
would be no matching GPD. Indeed one would have

r3

r2
=

2.0

4.8
= 41.67%, %1 ◦ %−1

2

(
r3

r2

)
= %1 (1.3077) = 9.90% >

r2

r1
=

4.8

52
= 9.23%

which violates the technical condition, albeit not by much. At first glance, here r2 does not seem
close to r3, being more than twice as large. However, it must be noted that the large-loss threshold
20 is far higher than the middle layer 5 xs 5, such that a drop of the RRoL to a bit less than half
is a slow decrease, in particular compared to the drop between bottom and middle layer, which is
down to less than a tenth. Such a tail geometry is (slightly) beyond the flexibility of the GPD.

4. Layers 1 to 4. If we have the premiums of layers up to quite large loss size, it is usually neither
necessary nor adequate to judgmentally set a large-loss frequency. We have two options:

(a) Layers 2 to 4 are matched a GP model, which yields a loss frequency of 19% at 3. This figure
is smaller than the RRoL of Layer 1 and thus consistent with the latter, such that we can
attach a model for Layer 1. For a GPD as last input the loss frequency at 1 is needed, which
can typically be inferred from empirical data, otherwise we set a plausible value. The resulting
model is built out of two GP pieces, one for Layer 1, one above.

(b) If some deviations of the given RRoL’s are accepted, we can “fit” one GPD to all four RRoL’s,
according to some deviation metric. An option is the sum of squared distances of given from
fitted RRoL’s. (To ensure a close fitting of the upper layers, one may give the respective
distances a higher weight.) The resulting GP model fits fairly well here (relative premium
deviations below 5%), happening to be pretty close to Pareto.

We assemble key figures of the resulting models in the comprehensive Table 2. To be comparable,
all appearing (Generalized) Pareto models start at the threshold s = 1. We display the (proper) GP
parameters and the frequencies/RRoL’s across the tower of layers.

3.5 Discussion
Is it disappointing that, due to the technical condition, some three-layer problems don’t have a Generalized
Pareto solution? As for mathematical beauty, maybe yes. As for practical relevance, not much. While
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Table 2: GPD fits
Layers used 3 1, 3 1, 3, 5 2 to 4 1; 2-4 ≈ 1-4

Parameters
ξ 0.5 0.59 0.41 0.44 0.20 0.56
σ 0.5 0.59 0.96 1.31 0.90 0.60
σ∗ 0 0 0.55 0.87 0.70 0.04
α 2 1.70 2.44 2.28 5.04 1.77
λ 0 0 1.35 1.98 3.54 0.06

frequencies / RRoL’s [%]
1 240.0 136.0 108.4 120.0 135.2

2 xs 1 52.0 80.0 52.0 52.0 52.0 52.0
3 26.7 20.9 24.1 19.0 19.0 20.7

2 xs 3 13.0 16.0 13.5 15.3 13.0 13.2
5 9.6 8.8 9.6 8.8 8.5

5 xs 5 4.8 4.8 4.8 4.8 4.8 4.6
10 2.4 2.7 2.3 2.6 2.5

10 xs 10 1.3 1.2 1.5 1.1 1.3 1.4
20 0.5 0.6 0.8 0.5 0.6 0.7

the problematic case (proper first layer, finite top layer) is relevant for practical use (where one often
wants to match premiums of proper limited layers with a severity model), the problematic RRoL situation
r1 � r2 ' r3 is not common. As mentioned after the theorem, it means that most losses affecting the
first layer don’t hit the higher layers, while most losses affecting the second layer are total losses both to
the second and third layer. Apart from being arguably a rather remote case in the real world, a severity
having such a rough tail geometry (within the first layer totally different from above) is hard to match
anyway with a two-parameter model; it calls for more complex models, maybe piecewise defined ones as
discussed e.g. in Fackler (2013).

So, it is not a big problem that the GPD fails to model some r1 � r2 ' r3 situations. On the other
hand, it is remarkable that it deals well with the analogous “opposite” tail geometry r1 ' r2 � r3. Here
most losses affecting the first layer are total losses both to the first and second layer, while they mostly
don’t hit the third layer, or if at all, only a tiny part of it. This (equally remote) tail geometry is matched
by the GPD, however, one could find it disappointing that the resulting distribution typically has ξ < 0
and a very low supremum loss being not much higher than a3, which leaves much of the third layer loss
free (and premium free). As in practice insurance covers are not given for free, this situation requires
manual correction or alternative models. An option is to use the GPD with a more restricted parameter
space such that all layers have a positive probability of a total loss. This is easy, but somewhat reduces
the range of three-layer problems that can be solved.

Practical experience suggests that for realistic layers and not-too-weird given premiums/RRoL’s, the
GPD usually solves the three-layer problem, yielding an exact match or at least a close approximation. If
the inferred ξ is negative, the resulting supremum loss is mostly such large that no practical issues arise.

Despite the flexibility of the GPD (and its many other advantages mentioned earlier), it could be
interesting to investigate whether other two-parameter models can solve the three-layer problem similarly
– or even better. The detailed proof of the theorem given in Appendix B, which is subdivided into many
steps, could lead the way for such research. While some steps are quite specific about the GPD, most
of them ultimately address surjectivity, which will anyway be specific per distribution, requiring rather
specific calculus. Instead, the overall setting seems rather general and easy to adapt to other models.
Key is Proposition B.1 about some local properties of the logarithm of the survival function, which are
necessary (and not far from sufficient) for some essential properties of the mapping given above in the
sketch of proof of the theorem, e.g. local invertibility and strict monotonicity in the single variables.
From the latter the way to global injectivity is not far, which is not a must for the practitioner but
greatly eases interpretation of results and numerical search for solutions. So, Proposition B.1 could be
used as a criterion to identify other promising models for the three-layer problem.
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4 Where the model risk (not) is
Despite its flexibility, it is clear that the GPD is not always the true tail model. However, with very
scarce data, finding the best fit is too ambitious an objective, one should be content with a model that
is reasonable and fairly close to the unknown (to be fair: unknowable) true model. In the words of the
literature on risk vs uncertainty (see Neth and Gigerenzer (2015) for an overview): in case of uncertainty
you cannot optimize (best solution), instead satisfice (good-enough solution).

To emphasize that with scarce data input the GPD is often good enough a tail model, we look at an
aspect of model risk (more exactly: model uncertainty) that is easily accessible and can be treated with
generality. We will see that, for a not-too-long layer covering a part of the (heavy-tailed) area of large
insurance losses, if we have the risk premium (first moment) and a bit more knowledge, there is not much
further uncertainty about the second moment, such that different parametric severity models must lead
to about the same results. For higher moments the situation is similar, but more complex.

To this end, we use the collective model of risk theory and a particular representation for the loss
count. Let [a, b] be a (proper) layer, N be the number of layer losses, and Xk be the severity of the
k-th layer loss. The loss sizes are independent of the loss number and iid, represented by X. We don’t
specify the distributions of N and X further, just assume finite first and second moments. Then Wald’s
equations for the aggregate layer loss S =

∑N
k=1Xk yield

e = E (S) = E (N)E (X) , Var (S) = Var (N)E2 (X) + E (N)Var (X)

4.1 New parameters
Let us now use an alternative parameter which is introduced and explored in Chapter 5 of Fackler (2017),
however, it may be much older: its empirical counterpart appears in some literature as Poisson Index,
see e.g. Ross and Preece (1985).

Definition 4.1. The contagion of a counting random variable N having finite first and second moment
is

Ct (N) := CV2 (N)− 1

E (N)
=

Var (N)− E (N)

E2 (N)
=

1

E (N)

(
Var (N)

E (N)
− 1

)
Note that the last factor is the over-dispersion of N , which equals 0 in the Poisson case and is observed

to be positive for a lot of real-world insurance data. Contagion and over-dispersion have the same sign.
Another interesting property is that the loss counts of all layers of a (re)insurance program have the same
contagion.

With κ := Ct (N) and f = E (N), Wald’s second equation can be rewritten compactly as

CV2 (S) = Ct (N) +
1

E (N)

E
(
X2
)

E2 (X)
= κ+

1 + CV2 (X)

f

from which we see immediately that if the expected layer loss frequency is very large, the relative second
moment (CV) of S depends mainly on the contagion of N , while the severity (and the uncertainty about
it) plays a minor role. The assessment of the contagion is instead affected by another model risk: that of
the loss count, another hard (and arguably largely underestimated) problem.

However, real-world (re)insurance layers often have very low loss frequencies. Then in the above
formula the last term cannot be neglected, so we must try to assess it. For limited layers (c = b−a <∞)
we can get more insight by using a quantity that somehow reflects the geometry of the cdf of X.

Definition 4.2. For integer k ≥ 1 we write

kτX :=
E
(
Xk
)

ck−1E (X)
, τX := 2τX =

E
(
X2
)

cE (X)

1τX = 1, but 2τX is most interesting, yielding extremely compact formulae for the second moment
using the RRoL r = f E (X) /c:

CV2 (S) = κ+
τX
r
, Var (S) = E2 (S)

(
κ+

τX
r

)
E
(
S2
)

= E2 (S)
(

1 + κ+
τX
r

)
For higher moments analogous, albeit much more complex, formulae hold; we will briefly look at them
later.
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4.2 Bounds for severity moments
Can we “estimate” kτX without knowing much about the distribution of X? Only kτX ≤ 1 is obvious as
X ≤ c (equivalence means that all layer losses are total losses). However, in some situations it is possible
to narrow down kτX surprisingly well, in particular for heavy severity tails. The heuristics behind the
following mathematics is that for such tails the obvious inequality Xk ≤ ck−1X, which is anything but
sharp, is surprisingly so in expectation.

Proposition 4.3. Suppose we have a proper limited layer [a, b] being affected by layer losses represented
by X, which leads to figures f > r ≥ g ≥ 0, where r > 0 is the RRoL, f = E (N) is the frequency of layer
losses and g is the frequency of total layer losses as defined in Remark 3.2. Then for integer k ≥ 1 we
have

1−

(
1−

(
r − g
f − g

)k−1
)
r − g
r
≤ kτX ≤ 1

and in particular for k = 2

1− f − r
f − g

r − g
r
≤ τX ≤ 1

If the cdf of X is concave on [0, c) (as is often observed for large insurance losses), we have

1−
(

1

3
+

2

3

(f − r)− (r − g)

f − g

)
r − g
r
≤ τX ≤ 1− 1

3

r − g
r

In this case (which implies r− g ≤ f − r) the resulting interval for τX is contained in the preceding one,
being smaller by a third at least. The inequalities are sharp, i.e., cannot be amended by narrower bounds.
The first and second one also hold if f is replaced by an upper bound and/or g by a lower bound.

The second formula is essentially Formula (1)/(2) in Aviv (2018), slightly amended and generalized –
and profoundly rearranged in order to make it more easily interpretable.

Proof. Recall that X represents the excess loss to the layer (not the ground-up loss), thus takes values
between 0 and c = b−a. Its survival function F̄X (x) decreases on [0, c) from F̄X (0) = 1 to the percentage
of total layer losses F̄X (c−) = P (X = c) = g

f , then at c jumps down to 0 (mass point of the excess loss).
The integral over [0, c] yields

cˆ

0

F̄X (x) dx =

∞̂

0

F̄X (x) dx = E (X) =
cr

f

i.e., the average of F̄X on [0, c] equals r
f . Now, with values at interval endpoints and average fixed, how

can the decreasing function F̄X look like? In particular, what values are possible for the integral

cˆ

0

kxk−1F̄X (x) dx =

∞̂

0

kxk−1F̄X (x) dx = E
(
Xk
)

giving the k-th moment, and consequently for kτX? This is a variational problem, the details of which
are assembled in Appendix A. The first inequality of Proposition A.3 reads[

g

f
+
r − g
f

(
r − g
f − g

)k−1
]
ck ≤

ˆ c

0

kxk−1F̄X (x) dx ≤ r

f
ck

If we divide by ck−1E (X) = r
f c
k and rearrange, we get the first and the second inequality above.

The third inequality results from the analogous variational problem having the convexity of F̄X
(equivalent to the concavity of the cdf) on [0, c) as additional constraint. It emerges if we divide the
second inequality of Proposition A.3, which reads[

g

f
+

4

3

r − g
f

r − g
f − g

]
c2 ≤

ˆ c

0

kxk−1F̄X (x) dx ≤
[
r

f
− 1

3

r − g
f

]
c2
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by cE (X), after rearranging terms. That the resulting interval is contained in the preceding one, can be
verified by some algebra, however, it is clear as the second variational problem is a “restriction” of the
first one. If we compare the lengths of the two intervals, we get(

2

3

(f − r)− (r − g)

f − g
r − g
r

)
≤ 2

3

(
f − r
f − g

r − g
r

)
As for uncertainty about frequencies, we show that for k ≥ 2 (k = 1 is trivial) the lower bound of the

first/second inequality

1−

(
1−

(
r − g
f − g

)k−1
)
r − g
r

= 1−

{
1 +

(
r − g
f − g

)
+ ...+

(
r − g
f − g

)k−2
}[(

1−
(
r − g
f − g

))
r − g
r

]
is a decreasing function in f and an increasing one in g. The first assertion is obvious from the LHS. The
second assertion can be seen from the RHS, where in the braces we have a sum of powers of r−gf−g = 1− f−r

f−g ,
which decreases in g, while the term in the squared brackets can be written as f−r

r
r−g
f−g , which decreases

in g as well. Thus, if f is set too high and/or g is set too low, the inequality still holds, it just yields a
larger interval due to a smaller lower bound.

Whether or not the inequalities stated in the Proposition yield narrow bounds, depends essentially
on where r is located in the interval [g, f ]. For orientation: a uniform distribution would yield r = f+g

2 ,
while a concave cdf implies r ≤ f+g

2 . The inequalities are very good in two obvious cases:

• r is very close to f . This means that the average layer loss is close to c, which can only occur if the
partial layer losses are very few or almost total, i.e., concentrated in the area just below c. This is
a rather unrealistic situation, however, as stated earlier, the GPD embraces such tails as well: for
ξ < −1 it has convex cdf, the density rises until the supremum loss is reached.

• r is very close to g and g > 0. By splitting the risk premium cr = cg + c (r − g) into the parts
stemming from total and partial layer losses, respectively, we see that in this case, where r−g � g,
the partial losses account just for a small part of the risk premium – they must be few and/or small,
i.e., rather concentrated near the low end of the layer. This case is easy to find in the real world:
If the loss severity distribution has a quite heavy tail and the layer is not too long, then the loss
frequency does not drop quickly along the layer, such that g is not far closer to 0 than f is. If the
cdf is further concave in the layer area (falling density), the partial losses have a (possibly much)
higher probability to be small than to be large.

If we compare the intervals for kτX given by the first inequality of the proposition, we see that their
length (

1−
(
r − g
f − g

)k−1
)
r − g
r

increases with k, but is bounded by r−g
r , which is small for heavy-tailed severities.

Summing up, if one wants to fairly assess kτX , one needs r and the frequencies f , g, but no more
details about the layer loss distribution. For layers in the middle of a tower this works even when the
frequencies are not available, provided you have the RRoL’s of the adjacent layers: According to the
proposition, in the first/second inequality f can be replaced by an upper bound, so one can use the
RRoL of the layer below. Analogously, instead of g one can use the RRoL of the layer above. Note that
for the narrower interval of the convex case such replacement of f and g does not work. So, this variant is
instructive theory, but less applicable in the insurance practice, where parameters are mostly somewhat
uncertain.

Example 4.4. To illustrate the above inequalities, let us look at one of the situations discussed in Section
3.4, namely 4a and here the first layer 2 xs 1, to which a GPD was assigned by solving the layer-endpoints
problem. The relevant data input (see Table 2) reads in the terminology of the present section: f = 120%,
r = 52%, g = 19%. With f being more than six times larger than g, and r being not close to either of
them, this is not an ideal data input for the above inequalities – one would expect to see a considerable
model uncertainty.

The resulting interval τX from the second inequality is τX ∈ [57%, 100%]. With the maximum being
75% higher than the minimum, this interval is not narrow, but for the given data it seems more than
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acceptable – recall it involves no model assumption (apart from the overall applicability of the collective
model). If we apply the third inequality (believing strongly in a concave cdf), we get τX ∈ [64%, 79%],
which is a remarkably narrow interval.

For comparison we calculate the output from the corresponding GP model. Generally for the proper
GPD (case ξ > 0, see Section 2.1) starting at s = a, the moments of the severity X of the (proper limited)
layer [a, b] can be written very compactly with the abbreviation γ := b+λ

a+λ = 1 + c
a+λ . One sees quickly

that

E (X) = (a+ λ)
1− γ1−α

α− 1
, E

(
X2
)

= 2 (a+ λ)
2

(
1− γ2−α

α− 2
− 1− γ1−α

α− 1

)
which yields

τX =
2

γ − 1

(
α− 1

α− 2

1− γ2−α

1− γ1−α − 1

)
If we plug in the inferred proper-GP parameters α = 5.04 and λ = 3.54, we get τX = 70%.

4.3 Skewness
We have closely looked at the second moment of S, where the formulae look very elegant. As for higher
moments, it is well known that E

(
Sk
)
can be expressed as a sum of products of moments of N and of X

of order up to k. However such a (intricate) formula in detail looks, if we express the appearing E
(
Xi
)

by the respective iτX and are in a situation where we have narrow intervals for the latter, we overall
have a formula for E

(
Sk
)
depending only weakly on the distribution of X, thus depending mainly on the

moments of N .
Let us illustrate this for the third moment. If we denote the third central moment of a r.v. by µ3 and

use the well-known formulae

µ3 (S) = µ3 (N)E3 (X) + 3Var (N)E (X)Var (X) + E (N)µ3 (X)

µ3 (X) = E
(
X3
)
− 3Var (X)E (X)− E3 (X)

we get with

f = E (N) , κ = Ct (N) , cr = f E (X) ⇒
E
(
Xk
)

Ek (X)
= kτX

fk−1

rk−1

after (quite) some algebra

µ3 (S) = E3 (S)

[
µ3 (N)− f

f3
+ 3

κ

f

(
τX
r
− 1

f

)
+

3τX
r2

]
which involves the first three moments of N , not just the contagion as the corresponding formula for the
second moment. So, we have a pretty complex formula, apart from the Poisson case where the first two
summands in the squared brackets disappear.

Overall we can say that layers covering heavy-tailed losses often bear surprisingly low model risk
from the severity side. More precisely (and modestly): once we have assessed the risk premium of the
layer (which can be a pretty uncertain enterprise), there is not much further uncertainty due to severity
model risk. In this case we may choose to work with the GPD simply for practical reasons: it solves the
three-layer problem and is, as was illustrated in Section 2, easy and intuitive to work with in many ways.
Why look for alternative (possibly less handy) parametric models when they will anyway yield similar
statistical output?

5 Wrap up
We can conclude that the building of models from very scarce data input, via the GPD (or in extreme
cases the single-parameter Pareto model) as described in this paper, is not just powerful in the sense
of getting things done (which is what is expected from practitioners in the first place). It it even very
satisfi(c)ing in terms of statistical modeling.
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A Calculus about model risk
This appendix gives not only technical details, but also (towards the end) some useful intuition.

Lemma A.1. Let ω be a nonnegative real-valued increasing (in the sense of: nondecreasing) function
on a real interval having finite endpoints a < b. Let ϕ : [a, b]→ [m,M ] be a decreasing function to a real
interval with endpoints m < M <∞, having the average value

ϕ[a,b] :=
1

b− a

ˆ b

a

ϕ (x) dx = u

which in particular implies m ≤ u ≤M . Then for the integral of ωϕ over [a, b] we have the inequality

m

ˆ b

a

ω (x) dx+ (M −m)

ˆ z

a

ω (x) dx ≤
ˆ b

a

ω (x)ϕ (x) dx ≤ u
ˆ b

a

ω (x) dx

where
z = a+ (b− a)

u−m
M −m

All appearing integrals are well defined; in particular z ∈ [a, b].
The bounds in the above inequality cannot be improved and are taken on, namely for piecewise constant

functions fulfilling the above conditions: the maximum for ϕmax ≡ u on [a, b); the minimum for

ϕmin (x) =

{
M, a ≤ x < z
m, z ≤ x < b

The two boundary functions are not exactly specified at b as their value at this point does not matter, we
just require m ≤ ϕ (b) ≤ ϕ (b−).

The results remain the same if we add the additional constraint that ϕ be right-continuous.

Proof. z ∈ [a, b] is clear; ω and ϕ are monotonic, thus (Riemann) integrable. So, all integrals are well
defined. ϕmax and ϕmin obviously belong to the class of functions ϕ in question. One sees quickly that
the integral of ωϕmax (ωϕmin) over [a, b] equals the upper (lower) bound stated in the above inequality.
It remains to show that the integral of ωϕ is within these bounds for any ϕ fulfilling the above conditions.

Consider such a ϕ. Note that, while ϕ may be imagined to decrease from M to m, this Lemma is
about the wider class of functions having more weakly ϕ (a) ≤M and ϕ (b) ≥ m.

Due to the definition of ϕmin, ϕmin ≥ ϕ on (0, z) and ϕmin ≤ ϕ on (z, b), such that we have

ˆ b

a

ω (x) [ϕ (x)− ϕmin (x)] dx =

ˆ z

a

ω (x) [ϕ (x)− ϕmin (x)] dx+

ˆ b

z

ω (x) [ϕ (x)− ϕmin (x)] dx

≥
ˆ z

a

ω (z) [ϕ (x)− ϕmin (x)] dx+

ˆ b

z

ω (z) [ϕ (x)− ϕmin (x)] dx = ω (z)

ˆ b

a

[ϕ (x)− ϕmin (x)] dx = 0

As ϕ is decreasing having average u, there must be an y ∈ [a, b] such that either ϕ (y) = u or ϕ jumps at
y from above u to below u. In any case, u = ϕmax ≤ ϕ on (a, y) and u = ϕmax ≥ ϕ on (y, b), such that
we have

ˆ b

a

ω (x) [ϕ (x)− ϕmax (x)] dx =

ˆ y

a

ω (x) [ϕ (x)− ϕmax (x)] dx+

ˆ b

y

ω (x) [ϕ (x)− ϕmax (x)] dx

≤
ˆ y

a

ω (y) [ϕ (x)− ϕmax (x)] dx+

ˆ b

y

ω (y) [ϕ (x)− ϕmax (x)] dx = ω (y)

ˆ b

a

[ϕ (x)− ϕmax (x)] dx = 0

As ϕmax and ϕmin are right-continuous, the proof is identical for right-continuous functions ϕ.

16



The heuristics behind the proof is as follows: ω can be seen as an increasing weight. To make the
integral of ωϕ large (small), we must find a ϕ that be rather small (large) at the beginning of the interval,
then decrease few (much), in order to be rather large (small) at the end of the interval.

The same heuristics can be applied to a smaller class of functions, where the resulting boundary
functions look quite different.

Lemma A.2. In the situation of the preceding Lemma we consider the subclass of functions ϕ decreasing
to (exactly) ϕ (b) = m and being convex. This implies m ≤ u ≤ m+M

2 . Again there are non-improvable
bounds for the integral of ωϕ over [a, b], which are taken on for piecewise linear functions fulfilling the
required conditions: the maximum for

ϕcxmax (x) = 2u−m− 2 (u−m)
x− a
b− a

= m+ 2 (u−m)
b− x
b− a

on [a, b]; the minimum for

ϕcxmin (x) =

{
M − (M −m) x−at−a , a ≤ x < t

m, t ≤ x ≤ b , t = a+ 2 (b− a)
u−m
M −m

Again the results remain the same if we add the additional constraint that ϕ be right-continuous.

Proof. Any convex function starting at ϕ (a) ≤M and ending at ϕ (b) = m lies below the line connecting
the two points (a, ϕ (a)) and (b, ϕ (b)), thus its average cannot exceed M+m

2 , i.e., u ≤ m+M
2 .

As the two defined boundary functions are right-continuous, the proof is the same whether or not we
add the constraint right-continuity.

One sees quickly that the boundary functions belong to the described class, in particular t ∈ [a, b].
ϕcsmax is linear, decreasing from 2u − m ≤ M to m, while ϕcsmin has two linear pieces, decreasing
between a and t from M to m, then being constant.

Recall that convex functions are continuous in open intervals, such that here jumps in (a, b) are
impossible. Recall further that convex functions can cross a linear function at most twice.

Now consider a ϕ fulfilling the above conditions and being different from the two defined boundary
functions. As ϕ has the same average as the boundary functions, it must cross each of them at least once
on (a, b). We show that it crosses exactly once – the second crossing is “outside” at the endpoint b.

We must have ϕ (a) > ϕcxmax (a), otherwise ϕ would lie below the straight line ϕcxmax all the time.
To have the same average, somewhere in (a, b) ϕ must be below ϕcxmax, thus the two functions cross in
a point y∗ ∈ (a, b). They further cross again at b, so we have ϕcxmax ≤ ϕ on (0, y∗) and ϕcxmax ≥ ϕ on
(y∗, b). The rest of the calculation is as in the preceding Lemma.

Due to the definition of ϕcxmin, ϕcxmin (t) ≤ ϕ (t). However, this inequality must be strict, otherwise
ϕ would equal ϕcxmin on (t, b) and lie below ϕcxmin on (a, t). Thus, to have the same average, ϕ must
be lower than ϕcxmin somewhere before t, which means that the two functions must cross on (a, t) in
a point z∗ and due to the linearity of ϕcxmin on (a, t) and the convexity of ϕ there can be no further
crossing. So we have ϕcxmin ≥ ϕ on (a, z∗) and ϕmin ≤ ϕ on (z∗, b). The rest of the calculation is as in
the preceding Lemma.

Proposition A.3. With 0 ≤ g ≤ r < f , r > 0 let ϕ : [0, c] →
[
g
f , 1
]
be a decreasing right-continuous

function having the average ϕ[0,c] = r
f . Then for integer k ≥ 1 we have[

g

f
+
r − g
f

(
r − g
f − g

)k−1
]
ck ≤

ˆ c

0

kxk−1ϕ (x) dx ≤ r

f
ck

If ϕ is convex and ϕ (c) = g
f , which implies g ≤ r ≤ f+g

2 , we have a narrower interval, for k = 2 namely[
g

f
+

4

3

r − g
f

r − g
f − g

]
c2 ≤

ˆ c

0

2xϕ (x) dx ≤
[
r

f
− 1

3

r − g
f

]
c2

Proof. We are in the situation of the two preceding Lemmas with a = 0, b = b− a = c, M = 1, m = g
f ,

u = r
f , ω (x) = kxk−1. It remains to calculate some intermediate points and integrals. The ingredients

for the first lemma are

z =
r − g
f − g

c,

ˆ c

0

kxk−1dx = ck,

ˆ z

0

kxk−1dx =

(
r − g
f − g

)k
ck
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and putting pieces together we get (after some algebra) the first formula stated above. For the convex
case we have

ϕcxmax (x) =
2r − g
f
− 2

r − g
f

x

c

ϕcxmin (x) =

{
1− f−g

f
x
t , 0 ≤ x < t,

g
f , t ≤ x ≤ c,

t = 2c
r − g
f − g

The calculation of the integrals of 2xϕcxmax and 2xϕcxmin over [0, c] is straightforward.

The bounds in the two inequalities can be written in different ways. We have chosen a variant that
can be arrived at by not too much algebra and that emphasizes the shrinking from the first to the second
interval.

The setting of the proposition has a probabilistic interpretation, namely the situation of Proposition
4.3. There is a one-to-one correspondence between right-continuous functions decreasing on [0, c] from 1
to g

f and survival functions of layer severities, where c is the liability (cover) of the layer and g
f is the

total-loss / excess-loss frequency ratio. The only deviation is that the survival functions jump to 0 at c,
but the value of the function at the interval endpoint does not matter.

A technicality shall be mentioned: Functions ϕ may take on a value lower than 1 at 0. (Indeed ϕmax
and ϕcxmax do.) In the probabilistic interpretation this means a mass point of layer losses equaling 0.
These are no proper excess losses, we could call them “zero losses”. When they are counted as layer losses,
the true layer loss frequency is lower than f . On the other hand, functions may possibly (but not in
the convex case) take on a value greater than g

f at c−. (Indeed ϕmax does.) This means that the mass
point of total layer losses has a probability greater than g

f , such that the true frequency of total losses is
possibly greater than g. We could have excluded these (a bit confusing) cases by requiring ϕ (0+) = 1,
ϕ (c−) = g

f , but this would not have affected the derived inequalities, as the boundary functions we have
used can be approximated by similar ones decreasing from exactly 1 to exactly g

f .
Let us finally explain the layer loss distributions underlying the four boundary functions. If these

functions are layer severity survival functions, they describe:

ϕmax: only two (layer) loss sizes occur, constituting mass points, namely total layer losses (of size
c) with probability u = r

f , zero losses with probability 1− u.

ϕmin: only two loss sizes occur, total layer losses with probability m = g
f , partial layer losses of size

z = c r−gf−g with probability 1−m.

ϕcxmax: uniform distribution between the loss sizes 0 and c, plus two mass points, namely zero losses
with probability 1 + g

f − 2 rf , total losses with probability g
f .

ϕcxmin: uniform distribution between the loss sizes 0 and t = 2c r−gf−g , then a gap, finally the mass
point of total losses having probability g

f .
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B Proof of theorem
We subdivide the proof into many steps: firstly because it is lengthy, secondly to make the steps more
transparent and intuitive, thirdly because some intermediate results are interesting in their own right
and/or can possibly be generalized or adapted for other distribution models.

B.1 Preliminaries
The core of the proof is a number of mathematical properties of the logarithm of the survival function of
the GPD.

Proposition B.1. The function

ψ (x, s, ξ, σ) := −
ln
(
1 + ξ x−sσ

)
ξ

= ln

((
1 + ξ

x− s
σ

)− 1
ξ

)
, x > s ≥ 0, ξ ∈ R, σ > (−ξ (x− s))+

is well defined and continuously differentiable (C1) in all variables (for s=0 we mean right-differentiable).
The partial derivatives ψξ and ψσ are (strictly) positive. Interpreted as functions of x, they are strictly
increasing and ψξ ◦ ψ−1

σ is strictly convex.

Proof. The constraints of the domain (in particular on σ) ensure that the term under the logarithm is
positive. With the auxiliary variables v := x−s

σ > 0, z := ξv > −1, we have

ψ = − ln (1 + ξv)

ξ
= −v ln (1 + z)

z

where the last factor can be written as a well-defined Taylor series about z = 0:

ρ (z) :=
ln (1 + z)

z
=

∞∑
k=0

(−z)k

(k + 1)!

This yields in particular ψ (x, s, 0, σ) = −v = −x−sσ . ψ is C1 in z, v, and thus in the original variables.
The partial derivatives can be calculated easily, always looking separately at the case ξ = 0. We have
(for ξ 6= 0)

ψσ =
∂ψ

∂v

∂v

∂σ
=
−1

1 + ξv

−v
σ

=
v

(1 + ξv)σ
=

1(
1
v + ξ

)
σ

The final representation holds, as can be checked quickly, for ξ = 0 as well. One sees at a glance that ψσ
is positive and strictly increasing in v and thus in x. Further we have (for ξ 6= 0)

ψξ = −v ∂ρ
∂z

∂z

∂ξ
= −v

2

z2

[
z

1 + z
− ln (1 + z)

]
=

1

ξ2

[
ln (1 + z)− z

1 + z

]
which is positive as the terms in the last squared brackets can be written as

ˆ z

0

(
1

1 + t
− 1

(1 + t)
2

)
dt =

ˆ z

0

t

(1 + t)
2 dt

which is positive for z 6= 0 or equivalently ξ 6= 0. As for ξ = 0, we get analogously

ψξ = −v2 ∂ρ

∂z

∣∣∣∣
z=0

=
v2

2
> 0

If we interpret ψξ = 1
ξ2

[
ln (1 + ξv)− ξv

1+ξv

]
as a function of v and take the derivative, we get v

(1+ξv)2
> 0;

the same result holds for ξ = 0. So, ψξ is strictly increasing in v and in x.
Finally, as ψξ and ψσ are defined on the same domain (that of ψ), ψξ ◦ ψ−1

σ is well defined. Setting
(for ξ 6= 0)

y = ψσ =
v

(1 + ξv)σ
=

1

ξσ

z

1 + z

we get the equivalent formulae

ξσy =
z

1 + z
,

1

1 + z
= 1− ξσy
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which can be plugged in the above formula for ψξ. This yields

ψξ
(
ψ−1
σ (y)

)
= − 1

ξ2
[ln (1− ξσy) + ξσy]

which is twice differentiable in y and we have

(
ψξ ◦ ψ−1

σ

)′′
(y) =

σ2

(1− ξσy)
2 > 0

One checks quickly that the last formula holds for ξ = 0 too, such that we have shown the stated strict
convexity.

Definition B.2. If a nonnegative (weighting) function w and its product with another real-valued func-
tion g are both integrable on an interval [a, b], −∞ < a < b ≤ ∞, we call

wg[a,b] :=

´ b
a
g (x)w (x) dx´ b
a
w (x) dx

the w-weighted average of g on [a, b]. If w and g are right-continuous, this definition extends (via b↘ a)
in a natural way to the case a = b, yielding the “average” g (a).

Where w (x) = 0, g (x) has no impact. This definition shall embrace functions g that are defined only
on [a, b] \ w−1 (0).

Proposition B.3. For given 0 ≤ s ≤ a < b = a + c and with the constraint ξ < 1 for b = ∞; with

F̄ (x) =
((

1 + ξ x−sσ
)+)− 1

ξ

, x ≥ s; the function

E :
{

(ξ, σ) ∈ R2 | σ > (−ξ (a− s))+
}
3 (ξ, σ) 7→ E (s, a, b, ξ, σ) =

bˆ

a

F̄ (x) dx ∈ (0,∞)

is C1 and one can get its partial derivatives by differentiating under the integral. For the logarithmic
partial derivatives we have

Eξ
E

= F̄ψξ
[a,b]

= F̄ψξ
[a,b∗]

,
Eσ
E

= F̄ψσ
[a,b]

= F̄ψσ
[a,b∗]

where ψ = ln
(
F̄
)
being undefined where F̄ = 0, and b∗ is the upper interval endpoint capped by the

supremum loss:

b∗ :=

{
min

(
b, a1 + σ

−ξ

)
, ξ < 0

b ξ ≥ 0

For b < ∞ the same results hold for the function R := E/c, yielding the same logarithmic derivatives,
and can be meaningfully extended to the case b = a.

Proof. The domain of (ξ, σ) is such that E is positive, which makes logarithmic derivatives in principle
possible. As for partial derivatives, in most situations we can apply the Leibniz integral rule in its basic
form. The integrand F̄ is indeed C1 in the parameters, apart from the case ξ < 0, where we have
continuity, but possibly a kink at −ξ (x− s) = σ or equivalently x = s + σ

−ξ . If b < s + σ
−ξ , the kink is

beyond the interval, while for b ≥ s+ σ
−ξ we can rewrite the integral as

E =

s+ σ
−ξˆ

a

(
1 + ξ

x− s
σ

)− 1
ξ

dx

with a C1 integrand and a variable C1 upper bound. In both cases we can differentiate under the integral
according to the Leibniz rule, and the extra terms coming in for variable interval endpoints equal 0. For
ξ ≥ 0 the integrand is C1 anyway, so applying the Leibniz rule is straightforward if b is finite. In the
remaining case 0 ≤ ξ < 1, b = ∞ we can see the differentiability (under the integral) e.g. by verifying
that the integral with finite b and its partial derivatives converge for b → ∞ to the infinite integral and
its derivatives, respectively.
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As for the logarithmic derivatives, if we denote ξ or σ by t, we get

Et
E

=
∂t
´ b
a
F̄ (x) dx´ b

a
F̄ (x) dx

=

´ b
a
∂tF̄ (x) dx´ b
a
F̄ (x) dx

=

´ b∗
a

∂tF̄ (x)
F̄ (x)

F̄ (x) dx´ b∗
a
F̄ (x) dx

=

´ b∗
a
ψtF̄ (x) dx´ b∗

a
F̄ (x) dx

= F̄ψt
[a,b∗]

=F̄ ψt
[a,b]

with the function ψ = ln
(
F̄
)
studied above, which is defined where F̄ > 0. The last equivalence holds as

the weight w equals 0 between b∗ and b.
If a < b, R equals E up to a constant, such that the properties of the partial derivatives are the same

and the logarithmic derivatives coincide. For b = a we have (in the given domain)

R (s, a, a, ξ, σ) =

(
1 + ξ

a− s
σ

)− 1
ξ

which is C1 in ξ and σ and the partial logarithmic derivatives are the partial derivatives of ψ. Thus,

∂

∂t
(ln (R (s, a, a, ξ, σ))) = ψt (a) = F̄ψt

[a,a]

where the last term is a degenerate, but well defined, weighted average.

Remark B.4. For a > s the domain of E and R is bounded from below by the half-line −ξ (a− s) = σ > 0,
which separates the parameter situations where the supremum loss is below the layer attachment point
from those where it is above, such that the layer has a positive probability of loss. See Figure 2 showing
this fifth half-line, which unlike the other four indicates no mathematical property, but applicability for
the modeling of a given layer/threshold.
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Figure 2: Admissible GPD areas

As a last ingredient we need a Lemma about convex functions on three intervals.

Lemma B.5. Let f , g, w be real-valued functions on an interval I such that w, fw, gw are integrable; w is
positive; f is strictly increasing; and h := g ◦f−1 is strictly convex. Let further [a1, b1] < [a2, b2] < [a3, b3]
be three weakly overlapping (possibly degenerate) subintervals of I such that [a1, b1] ∪ [a3, b3] 6= [a2, b2].
Then for the respective weighted averages

gi := wg[ai,bi], f
i

:= wf
[ai,bi]

the following formula holds: (
g2 − g1

) (
f

3 − f2
)
−
(
g3 − g2

) (
f

2 − f1
)
< 0

Proof. Let gk be any real numbers and f1 < f2 < f3. Then we have

D ((fk, gk)k) := (g2 − g1) (f3 − f2)− (g3 − g2) (f2 − f1)

= g1f2 + g2f3 + g3f1 − g1f3 − g2f1 − g3f2 = (f3 − f2) (f2 − f1)

{
g2 − g1

f2 − f1
− g3 − g2

f3 − f2

}
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where the first representation is as above, the second cyclically symmetric, and the third a product of
two positive terms with a difference (in braces) indicating convexity. Indeed, if we choose any values
x1 < x2 < x3 in I and set fk = f (xk), gk = g (xk), we have f1 < f2 < f3 and h (fk) = g (xk), which
yields

g2 − g1

f2 − f1
− g3 − g2

f3 − f2
=
h (f2)− h (f1)

f2 − f1
− h (f3)− h (f2)

f3 − f2
< 0

due to the strict convexity of h.
Now assume that the three given subintervals do not overlap and choose xk ∈ [ak, bk], which implies

x1 < x2 < x3. First interpret D ((f (xk) , g (xk))k) as a function of x1, which we let vary in [a1, b1], while
keeping x2 and x3 fixed. Note that

D (f (x1) , f (x2) , f (x3) , g (x1) , g (x2) , g (x3)) = g (x1) f2+g2f3+g3f (x1)−g (x1) f3−g2f (x1)−g3f2 < 0

is a linear combination of the functions f (x1) and g (x1), which we can integrate over [a1, b1] using the
positive weight w. Dividing the result by

´ b1
a1
w (x) dx > 0 yields

D
(
f

1
, f (x2) , f (x3) , g1, g (x2) , g (x3)

)
= g1f2 + g2f3 + g3f

1 − g1f3 − g2f
1 − g3f2 < 0

(In the degenerate case a1 = b1 we get the same inequality by doing nothing, as here f (x1) = f
1
,

g (x1) = g1.) The last inequality holds for any x2 ∈ [a2, b2] and x3 ∈ [a3, b3]. If we still keep x3 fixed and
integrate by x2, we get analogously

D
(
f

1
, f

2
, f (x3) , g1, g2, g (x3)

)
= g1f

2
+ g2f3 + g3f

1 − g1f3 − g2f
1 − g3f

2
< 0

and finally by a third integration D
(
f

1
, f

2
, f

3
, g1, g2, g3

)
< 0.

Having proved the lemma for non-overlapping intervals, let us now look at interval triples that are
just ordered, i.e., [a1, b1] < [a2, b2] < [a3, b3]. If all six layer endpoints are different, ordering them yields
a partition of the interval [a1, b3] into a “tower” of five proper, non-overlapping, basic subintervals. If
some of the layer endpoints coincide, we can order them nevertheless and interpret any interval between
two coinciding points as a degenerate interval of length zero, such that we have again a tower of five
subintervals, now with one or more of them being degenerate.

For ease of reading we use a compact (and somewhat loose) notation, naming the basic subintervals
(in rising order) u, v, x, y, z and writing for unions of adjacent subintervals vx, xyz, etc. Each interval
[ai, bi] is a union of some of the basic subintervals. Investigating how the former can overlap (or not),
one sees quickly that if one rewrites [a1, b1] < [a2, b2] < [a3, b3] in terms of the basic subintervals, there
are five possibilities:

u < x < z, u < xy < yz, uv < vx < z, uv < vxy < yz, uvx < vxy < xyz

The first case is non-overlapping and already done. In the second and third case two intervals overlap (and
are thus proper). In the fourth case the middle interval overlaps with each of the others, but the latter
do not overlap, which means weakly overlapping. In the last case all three layers share the subinterval x,
which cannot be degenerate, otherwise (uvx = uv, xyz = yz) one would be in the preceding case. The
fifth case is not weakly overlapping and we don’t have to treat it. (In fact here the stated inequality does
not generally hold, as can be seen easily from calculating examples of three largely overlapping layers.)

Now consider the second case. For orientation note that in the situation u < xy < yz all basic
subintervals may be degenerate apart from y, which must be proper, otherwise we would have xy = x,
yz = z and be back in the first case. If x is degenerate, we have xy = y ⊂ yz. z can be degenerate too
(yielding an analogous situation), but not at the same time as x, otherwise we would have xy = yz. Let
us introduce some more compact notation. For any two basic subintervals r 6= s we write

|r| :=
ˆ
r

w (x) dx, gr := wgr, f
r

:= wf
r
, Υr,s :=

gs − gr

f
s − fr

where f
r 6= f

s
as f is strictly increasing. Some algebra shows that for proper y we have

ḡxy =
|x|

|x|+ |y|
ḡx +

|y|
|x|+ |y|

ḡy, ḡxy − ḡu =
|x|

|x|+ |y|
(ḡx − ḡu) +

|y|
|x|+ |y|

(ḡy − ḡu)
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ḡyz =
|y|

|y|+ |z|
ḡy +

|z|
|y|+ |z|

ḡz, ḡyz − ḡxy =
|y|

|y|+ |z|
(ḡz − ḡy) +

|y|
|x|+ |y|

(ḡy − ḡx)

which together with analogous formulae for f yields Υxy,y = Υx,y, Υyz,z = Υy,z and (after more algebra)

g2 − g1

f
2 − f1 = Υu,xy = p1Υu,x + (1− p1)Υu,y, p1 =

|x|
(
f
x − fu

)
|x|
(
f
x − fu

)
+ |y|

(
f
y − fu

)
g3 − g2

f
3 − f2 = Υxy,yz = p2Υx,y + (1− p2)Υy,z, p2 =

f
y − fxy

f
yz − fxy

As y is a proper interval and f a strictly increasing function, all appearing denominators are positive
and p1, p2 ∈ [0, 1]. Thus, the last two formulae constitute convex combinations and quickly lead to
the desired inequality as follows. Each triple of basic subintervals r < s < t is non-overlapping, hence
Υr,s < Υs,t which, as one sees quickly, is equivalent to both Υr,s < Υr,t and Υr,t < Υs,t. Thus, we have
Υu,x < Υu,y < Υx,y < Υy,z, which immediately implies

g2 − g1

f
2 − f1 <

g3 − g2

f
3 − f2

The third case uv < vx < z has the same proof as the second, just swap u and z, v and y.
Finally, in the fourth case uv < vxy < yz both v and y must be proper, otherwise we would have less

than two overlaps and be back in one of the preceding cases. By adapting formulae from the second case,
we get

g2 − g1

f
2 − f1 = Υuv,vxy = p3Υu,v + (1− p3)Υv,xy = p3Υu,v + (1− p3) p4Υv,x + (1− p3) (1− p4)Υv,y

g3 − g2

f
3 − f2 = Υvxy,yz = p5Υvx,y + (1− p5)Υy,z = p5p6Υv,y + p5 (1− p6)Υx,y + (1− p5)Υy,z

which are again convex combinations. As Υu,v < Υv,x < Υv,y < Υx,y < Υy,z, the first equation yields a
smaller value than the second whatever the weights, apart from one case of equivalence which requires
p3 = 0 = p4, p5 = 1 = p6, such that both equations yield Υv,y. Inspecting the weights, we see that

0 = p3 =
f
v − fuv

f
vxy − fuv

, 1 = p5 =
f
y − fvxy

f
yz − fvxy

imply v = uv and y = yz or equivalently that u and z are degenerate, which is possible. Further we see
that

0 = p4 =
|x|
(
f
x − fv

)
|x|
(
f
x − fv

)
+ |y|

(
f
y − fv

)
implies |x| = 0 or equivalently that x is degenerate, which is possible. But, u, x, z cannot be degenerate
intervals at the same time: this situation means v < vy < y, where the middle interval is the non-
overlapping union of the other two, which is exactly the one weakly overlapping case that the Lemma
excludes. Here indeed the inequality turns into an equation. We are done.

If the three given intervals correspond to layers, the last and forbidden situation means that the middle
layer alone provides exactly the same insurance cover as top and bottom layer together. As explained
after the theorem, this is no meaningful input for the three-layer problem.
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B.2 Main part
Consider the three-layer problem as posed in the theorem, i.e., we have been given

• three strongly ordered and weakly overlapping layers and/or thresholds [ai, bi] of finite length ci,

• respective (finite) risk premiums ei and corresponding, strictly decreasing RRoL’s r1 > r2 > r3 > 0.

• As a particular case, b3 =∞ is admitted; here r3 = 0 and one requires e3 > 0.

The constraints ensure that all layers/thresholds are exposed to losses (i.e., have a positive loss frequency),
even the third and highest one. Generalized Pareto models fulfill this property if one restricts the
parameter space accordingly. If we choose s = a1 (we don’t need to model losses below the lowest layer),
the adequate domain is given in the following definition, where finite expectation for unlimited layers is
ensured by constraining ξ accordingly.

Definition B.6. For a given, strongly ordered, layer triple [ai, bi] we set

∆ := {(ξ, σ) ∈ (−∞, ξsup)× (0,∞) |σ > −ξ (a3 − a1)} , ξsup :=

{
∞, b3 <∞
1, b3 =∞

∆∗ := {(ξ, σ) ∈ (−∞,∞)× (0,∞) |σ > −ξ (a2 − a1)}

Now consider three closely related functions:

Definition B.7. For a given, strongly ordered, layer triple [ai, bi] we write F̄ (x) =
((

1 + ξ x−a1σ

)+)− 1
ξ

,
x ≥ a1, and set: for proper layers Ei := E (a1, ai, bi, ξ, σ) , for limited layers Ri := R (a1, ai, bi, ξ, σ). We
can interpret

Ri =
1

ci

ˆ bi

ai

F̄ (x) dx = F̄
[ai,bi]

as a (non-weighted) average of F̄ across the layer, which (by taking the limit) embraces the case ai = bi,
where we get Ri = F̄ (ai).

We define three layer ratio functions as follows: for proper layers (ai < bi)

Φ : ∆→ (0,∞)
2
, (ξ, σ) 7→

(
E2

E1
,
E3

E2

)
for limited layers (ai ≤ bi <∞)

Φ∗ : ∆→ (0,∞)
2
, (ξ, σ) 7→

(
R2

R1
,
R3

R2

)
for an unlimited top layer (ai ≤ bi, b3 =∞)

Φ∗∗ : ∆→ (0,∞)
2
, (ξ, σ) 7→

(
R2

R1
,
E3

R2

)
The first component of these functions shall be defined on the extended domain ∆∗.

Finally, for ξ > 0 we set with F̃ (x) := (x− a1)
− 1
ξ : for proper layers

Ẽi := Ẽ (a1, ai, bi, ξ) =

ˆ bi

ai

F̃ (x) dx

for limited layers R̃i := R̃ (a1, ai, bi, ξ), which embraces degenerate layers.

∆ was chosen such that all Ei are positive and finite for proper layers, while all Ri are positive and
finite for limited layers. For E1, E2, R1, R2 this holds on the domain ∆∗ ⊇ ∆, which is larger if a2 < a3

or b3 = ∞. So, the three functions are well defined. Φ is maybe the straightforward variant, but either
Φ∗ or Φ∗∗ describes the three-layer problem for proper layers equivalently to Φ (being component-wise
equal up to a factor), while more generally embracing thresholds. We can in the following largely treat
the three functions in parallel (writing sometimes Φ(∗∗)), keeping in mind that the latter two (shortly
written Φ∗(∗)) cover all three-layer problems treated in the theorem. Let us first look at the borders of
the domain ∆.
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Lemma B.8. For any given, strongly ordered, layer triple [ai, bi], the layer ratio functions are continuous
and can be extended continuously to the border of ∆, apart from the half-line ξ = 1, σ ≥ 0 in case of
infinite b3. On the half-line −ξ (a3 − a1) = σ > 0 we get

Φ (ξ, σ) =

(
E2

E1
, 0

)
, Φ∗(∗)(ξ, σ) =

(
R2

R1
, 0

)
while on the half-line σ = 0, ξsup > ξ ≥ 0 we get

Φ (ξ, 0) =

(
Ẽ2

Ẽ1

,
Ẽ3

Ẽ2

)
, Φ∗(ξ, 0) =

(
R̃2

R̃1

,
R̃3

R̃2

)
, Φ∗∗(ξ, 0) =

(
R̃2

R̃1

,
Ẽ3

R̃2

)

or more precisely a meaningful extension thereof by zeros, which maps (0, 0) to (0, 0) and sets Ẽ2/Ẽ1 and
R̃2/R̃1 equal to 0 in the case a1 = b1 = a2 < b2, ξ ≤ 1.

The first component Φ(∗∗)
1 can even be extended continuously to the border of ∆∗, which contains the

whole non-negative ξ-axis. Assembling where on this axis the components of the extended layer ratio
functions equal zero, we get:

Φ
(∗∗)
1 (ξ, 0) = 0: for ξ ∈ [0, 1] anyway; for ξ ∈ [0,∞) if b1 = a1.

Φ
(∗∗)
2 (ξ, 0) = 0: for ξ = 0 anyway; for ξ ∈ [0, 1] if a2 = a1.

For the case of an unlimited top layer this means that on the border of ∆, for ξ < ξsup = 1 we have
Φ∗∗1 (ξ, 0) ≡ 0, while Φ∗∗2 (ξ, 0) ≡ 0 too if a2 = a1.

Proof. The formulae for Φ follow immediately from those for Φ∗(∗), so it suffices to treat the latter.
Recall first how three strongly ordered layers [ai, bi] can relate to each other. a1 = a2 is possible, but

implies a1 = b1 = a2 < b2. a2 = a3 is possible, but implies a2 = b2 = a3 < b3. In any case we must have
a1 < a3, such that −ξ (a3 − a1) = σ > 0 defines a half-line in the quadrant ξ < 0, σ > 0, for orientation
see Figure 2. For a point (ξ, σ) in this quadrant, the corresponding GPD has the supremum loss a1 + σ

−ξ ,
such that a layer with attachment point a has zero probability of loss iff −ξ (a− a1) ≥ σ > 0.

The Ri and E3 are well-defined and continuous functions of (ξ, σ) on the whole half-plane R× (0,∞).
This domain embraces the half-line −ξ (a3 − a1) = σ > 0, on which R3 and E3 equal 0. As R1 > 0 on
the whole half-plane, R2

R1
is well defined and continuous on the whole half-plane (and positive on ∆∗).

R2 equals 0 outside of ∆∗, i.e., for all points fulfilling −ξ (a2 − a1) ≥ σ > 0; these constitute an area
not bordering ∆ if a2 < a3. Then R3

R2
and E3

R2
too are continuous about the half-line −ξ (a3 − a1) = σ > 0,

on which they equal 0.
It remains to look at the case a2 = b2 = a3 < b3, where we have R2 = F̄ (a3). Note that generally

Ei =

ˆ bi

ai

F̄ (x) dx =

ˆ b∗i

ai

F̄ (x) dx, b∗i :=

{
min

(
bi, a1 + σ

−ξ

)
, ξ < 0

bi, ξ ≥ 0

such that in our situation (degenerate second layer, being the attachment point of the third, which is
proper) we have on ∆ the inequality

0 <
E3

R2
=

´ b∗3
a3
F̄ (x) dx

F̄ (a3)
=

ˆ b∗3

a3

F̄ (x)

F̄ (a3)
dx ≤ b∗3 − a3

Thus, for any sequence (ξk, σk) converging to some point (ξ0, σ0) on the half-line 0 < σ0 = ξ0 (a3 − a1),
we ultimately have ξk < 0 and with

0 <
E3

R2
≤ b∗3 − a3 ≤

σk
−ξk

− (a3 − a1) −→ σ0

−ξ0
− (a3 − a1) = 0

it is clear that E3

R2
has limit 0 at any point on the half-line.

Let us now investigate the other (open) half-line σ = 0, ξ > 0, for which it is sufficient to consider the
layer ratio functions on the adjacent quadrant ξ > 0, σ > 0. Here we have for finite b3

R3

R2
=

((
1 + ξ x−a1σ

)+)− 1
ξ

[a3,b3]

((
1 + ξ x−a1σ

)+)− 1
ξ

[a2,b2]
=

(
σ
ξ + x− a1

)− 1
ξ

[a3,b3]

(
σ
ξ + x− a1

)− 1
ξ

[a2,b2]
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For any sequence (ξk, σk) converging to some point (ξ0, 0) on the positive ξ-axis, the numerator of the
last representation tends to

(x− a1)
− 1
ξ0

[a3,b3]

= R̃3 (ξ0)

which is positive and finite as a3 > a1. Likewise, the numerator tends to R̃2 (ξ0), which, however, can be
infinite, namely if a2 = a1 and ξ0 ≤ 1. Nevertheless we have overall for ξ0 > 0

lim
k→∞

R3

R2
(ξk, σk) =

R̃3

R̃2

(ξ0)

where R̃2 (ξ0) =∞ simply means that the limit equals 0.
For infinite b3 and ξ ∈ (0, 1) the reasoning is analogous with

E3

R2
=

σ
1−ξ

(
1 + ξ a3−a1σ

)1− 1
ξ

((
1 + ξ x−a1σ

)+)− 1
ξ

[a2,b2]
=

ξ
1−ξ

(
σ
ξ + a3 − a1

)1− 1
ξ

(
σ
ξ + x− a1

)− 1
ξ

[a2,b2]

where, as one sees quickly, the denominator to the right converges to Ẽ3 (ξ0).
For the first component we have as above, in the whole quadrant ξ > 0, σ > 0,

R2

R1
=

(
σ
ξ + x− a1

)− 1
ξ

[a2,b2]

(
σ
ξ + x− a1

)− 1
ξ

[a1,b1]

If a1 < a2, we can proceed exactly as above, calculating the limits of denominator and numerator
separately. The former is positive and finite, the latter is infinite if ξ0 ≤ 1; then the limit of R2

R1
equals 0.

The case a1 = b1 = a2 < b2 requires some extra reasoning. Here R1 = F̄ (a1) ≡ 1 and

0 <
R2

R1
= R2 = F̄ (x)

[a2,b2]
≤ F̄ (b2) =

(
1 + ξ

b2 − a1

σ

)− 1
ξ

As b2 > a1, the last term tends to 0 for any sequence (ξk, σk) converging to some point (ξ0, 0) on the
positive ξ-axis. Thus, the limit of R2

R1
equals 0 and it remains to show that R̃2/R̃1 = 0 too for a1 = b1. As

R̃1 = F̃ (a1) =∞, we are done if R̃2 is finite, i.e., if ξ > 1. In the remaining case ξ ≤ 1, a1 = b1 = a2 < b2
both R̃1 and R̃2 are infinite, but we can meaningfully interpret their ratio as equaling 0 via

R̃2

R̃1

:= lim
ε→0

R̃ (a1, a1 + ε, b2, ξ)

R̃ (a1, a1 + ε, a1 + ε, ξ)
= lim
ε→0

F̃ (x)
[a1+ε,b2]

F̃ (a1 + ε)
= 0

Finally, similar straightforward calculus shows that for sequences ∆ 3 (ξk, σk) → (0, 0), the limit of
all layer ratio functions equals (0, 0), while Φ(∗∗)

1 (ξk, σk) converges to 0 even for sequences in the larger
∆∗. Overall we have a continuous extension of the Φ(∗∗)

1 and Φ(∗∗)
2 to all half-lines in question, including

the point (0, 0) where they meet.
Collecting where on the border Φ(∗∗)

1 and Φ
(∗∗)
2 equal 0, we get the concluding assertions of the

lemma.

Proposition B.9. For any given, strongly ordered, layer triple [ai, bi], the components of the layer ratio
functions have the following properties at the extremes of the domain ∆:

For fixed σ > 0, the corresponding domain of ξ such that (ξ, σ) ∈ ∆, is (ξinf , ξsup) having the lower
endpoint ξinf = −σ

a3−a1 . For ξ ↘ ξinf the second components of all layer ratio functions tend to 0, while
for ξ ↗ ξsup we have

lim
ξ↗ξsup

Φ2 =
c3
c2
, lim

ξ↗∞
Φ∗2 = 1, lim

ξ↗1
Φ∗∗2 =∞, lim

ξ↗∞
Φ∗1 = 1

For fixed ξ, the corresponding domain of σ such that (ξ, σ) ∈ ∆, is (σinf ,∞), where σinf = (−ξ (a3 − a1))
+.

For σ ↘ σinf , Φ
(∗∗)
2 tends to 0 if ξ ≤ 0, while for any ξ we have

lim
σ↗∞

Φ2 =
c3
c2
, lim

σ↗∞
Φ∗2 = 1, lim

σ↗∞
Φ∗∗2 =∞, lim

σ↗∞
Φ1 =

c2
c1
, lim

σ↗∞
Φ
∗(∗)
1 = 1
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Proof. The domains for the one-parameter functions result immediately from the definition of ∆, for
orientation see Figure 2. The limits at the lower endpoints result from the preceding lemma, such that
it remains to look at the upper endpoints.

Let us fix σ > 0 and first look at the case b3 <∞. For ξ > 0 we have

R3

R2
=

((
1 + ξ x−a1σ

)+)− 1
ξ

[a3,b3]

((
1 + ξ x−a1σ

)+)− 1
ξ

[a2,b2]
=

(
1
ξ + 1

σ (x− a1)
)− 1

ξ

[a3,b3]

(
1
ξ + 1

σ (x− a1)
)− 1

ξ

[a2,b2]

where in the last representation both numerator and denominator tend to 1 as ξ ↗ ∞. So, we have
Φ∗2 = R3

R2
→ 1 and for proper layers Φ2 = c3R3

c2R2
→ c3

c2
. The reasoning for Φ∗1 = R2

R1
is the same.

In the case b3 =∞ we have for ξ > 0

E3

R2
=

σ
1−ξ

(
1 + ξ a3−a1σ

)1− 1
ξ

(
1 + ξ x−a1σ

)− 1
ξ

[a2,b2]

where for ξ ↗ 1 all factors but 1
1−ξ converge to positive real numbers, such that overall we have Φ∗∗2 =

E3

R2
→∞ and for a proper second layer

Φ2 =
E3

c2R2
→∞ =

c3
c2

Let us now fix ξ 6= 0. The Ri for limited layers and E3 for an unlimited top layer (here ξ < 1),
respectively, equal

Ri =

((
1 + ξ

x− a1

σ

)+
)− 1

ξ

[ai,bi]

, E3 =
σ

1− ξ

(
1 + ξ

a3 − a1

σ

)1− 1
ξ

For σ ↗∞ the former tend to 1 and the latter tends to ∞. One sees quickly that this holds for ξ = 0 as
well. The limits for Φ∗2, Φ∗∗2 , Φ2, Φ1 and Φ∗1 = Φ∗∗1 follow immediately.

Albeit their extensions will be useful below, many properties of the layer ratio functions hold only on
the original (open) domains ∆ and ∆∗. In the following, unless specified otherwise, we treat the original
functions.

Proposition B.10. For any given, strongly ordered and weakly overlapping, layer triple, the components
of the layer ratio functions have continuous and positive partial derivatives, such that the components are
strictly increasing in both variables. Moreover, the layer ratio functions locally have C1 inverses and are
thus, in particular, continuous and open functions. As for their range, we have

Φ (∆) ⊆
(

0,
c2
c1

)
×
(

0,
c3
c2

)
, Φ∗(∆) ⊆ (0, 1)

2
, Φ∗∗(∆) ⊆ (0, 1)× (0,∞)

and if we fix any σ > 0, the second component of the resulting functions in ξ are bijective in the sense
that they map bijectively on the respective interval from above:

Φ2 (−, σ) on
(

0, c3c2

)
, Φ∗2 (−, σ) on (0, 1), Φ∗∗2 (−, σ) on (0,∞).

Proof. In any distribution model, for limited layers, a higher layer has a smaller or equal RRoL than a
lower one, and equivalence occurs iff the survival function is constant across both layers and in between,
i.e., from the lower attachment point to the higher detachment point, which means that all losses affecting
the lower layer are total losses for both layers. According to the choice of ∆, the survival function of
the GPD is strictly decreasing from a1 until beyond a3, i.e., in at least part of each of the three layers.
Thus, we have for finite layers 0 < R2

R1
< 1, 0 < R3

R2
< 1 and for proper layers equivalently 0 < E2

E1
< c2

c1
,

0 < E3

E2
< c3

c2
. The last formula notably embraces the case of an unlimited top layer, where E3 <∞ and

c3 =∞. So, the ranges of the layer ratio functions lie in the two-dimensional intervals given above.
The choice of ∆ and ∆∗ enables us further to apply Proposition B.3 to all three layers. Thus, the Ei

and the Ri, as well as their logarithms, are C1 in both ξ and σ; this holds on ∆ for E3 and R3, on ∆∗
for the remaining quantities.
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Let now Λ be the (component-wise) logarithm of any of the layer ratio functions. The three variants
of Λ are component-wise equal up to constants; their partial derivatives coincide and follow immediately
from Proposition B.3. If we denote ξ or σ by t, we have on ∆

Λt =
(
F̄ψt

[a2,b
∗
2 ] − F̄ψt

[a1,b
∗
1 ]
, F̄ψt

[a3,b
∗
3 ] − F̄ψt

[a2,b
∗
2 ]
)

where b∗i is bi capped by the supremum loss as introduced in the proof of Lemma B.8. The appearing
terms are F̄ -weighted averages of the function ψt (x) over the three layer intervals (with layers possibly
shortened, which does not change the average). Recall from Proposition B.1 that ψt (x) is strictly
increasing. The three layers are, despite their eventual capping, still ordered (albeit the second and
third capped layer may have the supremum loss as common detachment point, such that their ordering is
not strong any more). As the weighting function F̄ is positive in the area of the capped layers, we must
have

ψt
3
> ψt

2
> ψt

1

Here for ease of reading we have introduced an abbreviated notation for the averages, which we will use
whenever it is clear which weighting function and intervals are being considered.

We see that the two components of Λt are (strictly) positive, which carries over to the components of
Φ

(∗∗)
t . Note that for the first components the properties found extend to the larger domain ∆∗.
It remains to show that Λ (and thus Φ(∗∗)) is locally a C1 diffeomorphism on ∆, for which it is

sufficient to show that the Jacobian matrix

J :=

(
Λ1;ξ Λ1;σ

Λ2;ξ Λ2;σ

)
=

(
ψξ

2 − ψξ
1

ψσ
2 − ψσ

1

ψξ
3 − ψξ

2
ψσ

3 − ψσ
2

)

(where we use a compact notation for partial derivatives) is invertible. We show that its determinant is
negative for any (ξ, σ) ∈ ∆. We have

det (J) = Λ1;ξΛ2;σ − Λ2;ξΛ1;σ =
(
ψξ

2 − ψξ
1
)(

ψσ
3 − ψσ

2
)
−
(
ψξ

3 − ψξ
2
)(

ψσ
2 − ψσ

1
)

The last expression is exactly the formula Lemma B.5 is about. Let us check the conditions of the lemma.
The intervals corresponding to the – possibly capped – layers are weakly overlapping like the original
intervals. After the capping the strong ordering (of second and third layer) might be spoilt, but the
condition [a1, b

∗
1] ∪ [a3, b

∗
3] 6= [a2, b

∗
2] is fulfilled. Due to Proposition B.1, ψσ is strictly increasing and

ψξ ◦ ψ−1
σ is strictly convex in the area of the capped layers. Hence, the lemma applies and det (J) is

negative.
Finally, let us fix a σ > 0 and interpret Φ(∗∗) as a function in ξ, which is defined on the domain

(ξinf , ξsup) given in Proposition B.9. From above we know that Φ(∗∗)
2 (−, σ) has a positive derivative, thus

is strictly increasing and in particular injective. To determine its range (image), we just need the limits
at the endpoints of the domain, which are assembled in Proposition B.9: at ξinf the limit equals 0, at
ξsup we have, according to the layer ratio function: c3

c2
, 1, or ∞. Thus, the respective images of Φ2 (−, σ)

and its variants are
(

0, c3c2

)
, (0, 1), and (0,∞).

Proposition B.11. For any given, strongly ordered and weakly overlapping, layer triple, the layer ratio
functions are injective. Thus, the Generalized Pareto solution of the three-layer problem, if any, is unique
and depends on the given input (ri, ei) in a continuously differentiable manner.

Proof. Let again Λ be the component-wise logarithm of Φ(∗∗). It is sufficient to show the injectivity of
Λ. Choose any point

(
ξ̊, σ̊
)
∈ ∆ and set (p, q) = Λ

(
ξ̊, σ̊
)
.

For any fixed σ > 0 we know from the preceding proposition that the function

kσ (ξ) := Λ2 (ξ, σ) = ln
(
Φ

(∗∗)
2 (ξ, σ)

)
is invertible and that there is a unique ξ such that (ξ, σ) ∈ ∆ and q = Λ2 (ξ, σ) = kσ (ξ) (or equivalently
Φ

(∗∗)
2 (ξ, σ) = eq). This means that the function

gq (σ) := k−1
σ (q)

28



is well defined for all σ > 0 and by construction all (gq (σ) , σ) lie in ∆. Further, gq (σ) is C1 in σ as an
implicit function solving the equation

Λ2 (gq (σ) , σ) = kσ (gq (σ)) = kσ
(
k−1
σ (q)

)
= q

We can thus take the derivative and get

0 =
d

dσ
Λ2 (gq (σ) , σ) =

∂

∂ξ
Λ2 (gq (σ) , σ) g′q (σ) +

∂

∂σ
Λ2 (gq (σ) , σ)

From the preceding proof we know that the partial derivatives of the components of Λ are positive, thus
we have (using again a compact notation for partial derivatives)

g′q (σ) = −Λ2;σ (gq (σ) , σ)

Λ2;ξ (gq (σ) , σ)
< 0

which means in particular that gq is strictly decreasing.
gq is the function which, for any σ, yields (the unique) ξ such that Λ2 (ξ, σ) = q. Now consider

hq (σ) := Λ1 (gq (σ) , σ)

which is another C1 function of σ. If we can show that it is injective, this implies that there is at most
one σ > 0 such that Λ1 (gq (σ) , σ) = p. As (p, q) was chosen arbitrarily in the image of Λ (through choice
of
(
ξ̊, σ̊
)
), this would proof the proposition. We get

h′q (σ) =
d

dσ
Λ1 (gq (σ) , σ) =

∂

∂ξ
Λ1 (gq (σ) , σ) g′q (σ) +

∂

∂σ
Λ1 (gq (σ) , σ)

= −Λ1;ξ (gq (σ) , σ)
Λ2;σ (gq (σ) , σ)

Λ2;ξ (gq (σ) , σ)
+ Λ1;σ (gq (σ) , σ) =

(
− 1

Λ2;ξ
{Λ1;ξΛ2;σ − Λ2;ξΛ1;σ}

)∣∣∣∣
ξ=gq(σ)

The last term must be positive: the factor in braces is the determinant of the Jacobian studied in the
preceding proof, which is negative for any (ξ, σ) ∈ ∆, while the denominator Λ2;ξ is positive. Thus, hq (σ)
is a strictly increasing function, thus is injective and so are Λ and Φ(∗∗).

From the preceding proposition we know that Φ(∗∗) is locally C1 invertible, so it is a C1 diffeomorphism
between ∆ and Φ(∗∗)(∆). Thus, its inverse is a C1 function mapping the given premium/RRoL input
(provided it is contained in Φ(∗∗)(∆)) to the GP parameters solving the three-layer problem.

B.3 Final step
Lemma B.12. For any given, strongly ordered, layer triple and the continuous extensions of its layer
ratio functions to the non-negative ξ-axis, the following holds: If a component of Φ(∗∗)(ξ, 0) does not equal
0 for all admissible ξ ∈ [0, ξsup), it equals initially (for small ξ) 0, then increases strictly. For ξ ↗ ξsup,
Φ

(∗∗)
2 (ξ, 0) tends to the same supremum as Φ(∗∗)

2 (ξ, σ) does (for fixed σ).

Proof. For each Ẽi or R̃i, we call the set of numbers ξ ∈ [0, ξsup) where it takes positive finite values: the
inner domain. From Definition 3.4 we know that if the latter is not empty, it is an open interval, namely
either (0, ξsup) or (1, ξsup). Thus, the same holds for the ratios Ẽi+1/Ẽi, R̃i+1/R̃i, Ẽ3/R̃2 constituting
the components of Φ(∗∗)(ξ, 0) as specified in Lemma B.8. As ψ̃ := ln

(
F̃
)

= − 1
ξ ln (x− a1) has the partial

derivative ψ̃ξ = 1
ξ2 ln (x− a1), which is a strictly increasing function in x, we can work with logarithmic

derivatives as in the proofs of Propositions B.3 and B.10. For a proper i-th layer we get for Ẽi on its
inner domain

d

dξ

(
ln
(
Ẽi

))
= F̃ ψ̃ξ

[ai,bi]

The corresponding R̃i has the same inner domain and logarithmic derivative. Further, R̃i embraces
degenerate layers, where the same formula holds. Overall the logarithmic derivatives, wherever they
exist, are F̃ -weighted averages of ψ̃ξ over the respective layer intervals, such that (using an abbreviated
notation for these weighted averages)

d

dξ

(
ln

(
Ẽi+1

Ẽi

))
= ψ̃ξ

i+1

− ψ̃ξ
i

> 0

29



and analogously for the other terms appearing as components of Φ(∗∗) (ξ, 0). Hence, the latter are strictly
increasing functions of ξ on their respective inner domains, on the lower end of which they must have
the infimum 0, in order to attach continuously to the area below the inner domain where the value 0 is
taken on.

As for the upper limit of Φ(∗∗)
2 (ξ, 0) for ξ ↗ ξsup, it is sufficient to look at Φ∗(∗)2 (ξ, 0), from which the

result for Φ2 (ξ, 0) immediately follows. For any interval [a, b] such that a1 < a ≤ b <∞, we have

R̃ (a1, a, b, ξ) = (x− a1)
− 1
ξ

[a,b]

−→
ξ↗∞

1

while in the case a1 = a < b <∞ we have (for ξ = 1 via l’Hôspital’s rule)

R̃ (a1, a1, b, ξ) =
(b− a1)

1− 1
ξ

(b− a1)
(

1− 1
ξ

) =
(b− a1)

− 1
ξ

1− 1
ξ

−→
ξ↗∞

1

For an unlimited third layer we have with a3 > a1 that

Ẽ3 = Ẽ (a1, a3,∞, ξ) =
(a3 − a1)

1− 1
ξ

1
ξ − 1

−→
ξ↗1
∞

By combining these formulae we can treat all situations having nonempty inner domains and get

lim
ξ↗∞

R̃3

R̃2

= 1, lim
ξ↗1

Ẽ3

R̃2

=∞

which are indeed the limits of Φ∗(∗)2 (ξ, σ) for ξ ↗ ξsup as calculated in Proposition B.9.

Lemma B.13. For any given, strongly ordered and weakly overlapping, layer triple, each contour line of
the second component of any layer ratio function, i.e., each nonempty set{

(ξ, σ) ∈ ∆
∣∣∣Φ(∗∗)

2 (ξ, σ) = t
}

can be written as {(g (σ) , σ) |σ ∈ (0,∞)} with a strictly decreasing C1 function g, which has the limits

lim
σ↗∞

g (σ) = −∞, (0,∞) 3 lim
σ↘0

g (σ) =

 1, b3 =∞, a2 = a1(
Φ

(∗∗)
2 (−, 0)

)−1

(t) , b3 >∞ or a2 > a1

Proof. To define a contour line, t must lie in the respective image of Φ(∗∗)
2 , which according to Proposition

B.10 is (0, tsup), where tsup equals c3
c2

for Φ2, 1 for Φ∗2, ∞ for Φ∗∗2 .
Let us fix such a t and set q = ln (t). Now we can proceed exactly as in the proof of Proposition

B.11 and define, for any σ > 0, g (σ) := gq (σ) as the (existing and unique) ξ such that (ξ, σ) ∈ ∆ and
Φ

(∗∗)
2 (ξ, σ) = eq = t. The resulting function g is C1 and strictly decreasing, having in particular limits

for σ ↘ 0 and σ ↗∞.
We show first that limσ↗∞ g (σ) = −∞. For an indirect proof, assume there is an m < 0 such that

limσ↗∞ g (σ) ≥ m > −∞. Then we would for any large σ > −m (a3 − a1) have (m,σ) ∈ ∆ and

t = Φ
(∗∗)
2 (g (σ) , σ) ≥ Φ(∗∗)

2 (m,σ)

where the last inequality follows from the monotonicity of Φ(∗∗)
2 in its variables, see Proposition B.10.

According to Proposition B.9, the limit of the RHS for σ ↗∞ equals tsup, which implies t ≥ tsup, which
is a contradiction.

Let us now look at the limit to the left, which we call

ξq := lim
σ↘0

gq (σ)

As all g (σ) ∈ (0, ξsup), we have either ξq = ξsup or ξq ∈ [0, ξsup), the interval on the ξ-axis which the layer
ratio functions were continuously extended to in Lemma B.8. First consider the case b3 = ∞, a2 = a1,
where according to the lemma Φ(∗∗)

2 (ξ, 0) ≡ 0. If we had ξq ∈ [0, ξsup) = [0, 1), the continuity of the
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extended layer ratio functions would imply Φ
(∗∗)
2 (ξq, 0) = limσ↘0 Φ

(∗∗)
2 (g (σ) , σ) = t > 0, which is a

contradiction. So, we must have ξq = 1.
In the remaining cases, where a2 > a1 and/or b3 < ∞, Φ(∗∗)

2 (−, 0) has an inner domain, on which it
is invertible. Due to the preceding lemma, limξ↗ξsup Φ

(∗∗)
2 (ξ, 0) = tsup > t. Here ξq = ξsup is impossible,

otherwise the monotonicity properties of the layer ratio functions would imply

t = lim
σ↘0

Φ
(∗∗)
2 (g (σ) , σ) ≥ lim

σ↘0
Φ

(∗∗)
2 (g (σ) , 0) = lim

ξ↗ξsup
Φ

(∗∗)
2 (ξ, 0) = tsup

which is a contradiction. Hence, ξq ∈ [0, ξsup) and due to the continuity of Φ(∗∗)
2 at (ξq, 0), ξq must be

the (existing and unique) ξ > 0 such that Φ(∗∗)
2 (ξ, 0) = t > 0.

Proposition B.14. Suppose you have got a strongly ordered layer triple [ai, bi] where top and middle
layer do not overlap. If the bottom layer is a threshold and/or the top layer is unlimited, the applicable
layer ratio functions (in particular Φ∗∗) are surjective in the sense that they have the images

Φ (∆) =

(
0,
c2
c1

)
×
(

0,
c3
c2

)
, Φ∗(∆) = (0, 1)

2
, Φ∗∗(∆) = (0, 1)× (0,∞)

which are the maximum possible intervals that the risk premiums/RRoL’s of three ordered layers can
attain, apart from cases where a layer has loss probability zero or the same RRoL as another layer. Here
the applicable layer ratio functions are C1 diffeomorphisms on the domain

∆ = {(ξ, σ) ∈ (−∞, ξsup)× (0,∞) |σ > −ξ (a3 − a1)} , ξsup =

{
∞, b3 <∞
1 b3 =∞

which is likewise the maximum possible parameter space where the GP model starting at a1 assigns positive
loss probabilities and finite expectations to all three given layers.

In the remaining case having a proper first layer and a limited third layer, Φ (if applicable) and Φ∗
are C1 diffeomorphisms on ∆ too, but have somewhat smaller images, being restricted by the following
technical condition:

Φ∗(∆) =
{

(z1, z2) ∈ (0, 1)
2 ∣∣ z1 > %1

(
%−1

2 (z2)
)}

, %i =
R̃i+1

R̃i

Φ (∆) =

{
(y1, y2) ∈

(
0,
c2
c1

)
×
(

0,
c3
c2

) ∣∣∣∣ y1 >
c2
c1
%1

(
%−1

2

(
c2
c3
y2

))}
Briefly, the GPD solves the three-layer problem, yielding a unique solution, for strongly ordered layer

triples with a non-overlapping top layer, under the following constraints on the given premiums/RRoL’s:
r1 > r2 > r3 ≥ 0 (always), further r3 > 0 and/or e3 > 0, plus the above technical condition where
applicable.

Proof. The comments on maximum possible ranges are obvious. For three ordered layers the inequality
r1 ≥ r2 ≥ r3 ≥ 0 is a mathematical necessity and any equivalence implies that a layer has RRoL zero,
which for limited layers means loss probability zero, or that two layers have the same RRoL, which for
limited layers means that all losses affecting the lower one are total losses for both layers (a case being
possible in theory, but very implausible in practice).

Now, for a given layering, choose any input of the three-layer problem with strict inequalities, i.e.,
r1 > r2 > r3 > 0. For infinite b3 choose e3 > 0 instead of r3, which here must equal 0. Let us write
u3 > 0 for the relevant data input about the third layer, i.e., r3 or e3. We want to find (ξ, σ) ∈ ∆ such
that Φ∗(∗)(ξ, σ) =

(
r2
r1
, u3

r2

)
, from which for proper layers Φ (ξ, σ) =

(
e2
e1
, e3e2

)
would immediately follow.

Note that the layer triple is weakly overlapping, such that we can apply all preceding results.
Let Λ be the component-wise logarithm of the function Φ∗(∗) and (p, q) that of

(
r2
r1
, u3

r2

)
. The function

g (σ) = gq (σ) giving the contour line for the “level” t = u3

r2
is, due to proof of the preceding lemma, for all

σ > 0 well defined and fulfills (g (σ) , σ) ∈ ∆ and Λ2 (g (σ) , σ) = q or equivalently Φ∗(∗)2 (g (σ) , σ) = u3

r2
.

This means that, for any σ > 0, (g (σ) , σ) solves half of the three-layer problem, by matching u3

r2
.

Now we consider, as in Proposition B.11, h (σ) := hq (σ) = Λ1 (gq (σ) , σ), which is also well defined for
all σ > 0 and has a continuous and positive derivative, which carries over to its exponential Φ∗(∗)1 (g (σ) , σ).
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If we find a σ such that h (σ) = p or equivalently Φ∗(∗)1 (g (σ) , σ) = r2
r1
, we have Λ (g (σ) , σ) = (p, q) or

equivalently Φ∗(∗)(g (σ) , σ) =
(
r2
r1
, u3

r2

)
, thus have solved the three-layer problem. As h (σ) and its

exponential Φ∗(∗)1 (g (σ) , σ) are (strictly) increasing functions, their images (ranges of values taken) are
determined by their limits for σ ↘ 0 and σ ↗∞. Let us calculate these limits for the latter function.

Recall from the preceding lemma that limσ↗∞ g (σ) = −∞. We show that for σ ↗∞

Φ
∗(∗)
1 (g (σ) , σ) =

R2

R1
(g (σ) , σ) =

((
1 + g (σ) x−a1σ

)+)− 1
g(σ)

[a2,b2]

((
1 + g (σ) x−a1σ

)+)− 1
g(σ)

[a1,b1]

tends to 1, or more strongly that this holds both for numerator and denominator of the last expression.
We have (g (σ) , σ) ∈ ∆, which means for large σ, where ultimately g (σ) < 0, that σ

−g(σ) > a3 − a1. This
implies for x ≥ a1

0 ≤ −g (σ)

σ
(x− a1) ≤ x− a1

a3 − a1
, 1 ≥

(
1 + g (σ)

x− a1

σ

)+

≥
(

1− x− a1

a3 − a1

)+

=

(
a3 − x
a3 − a1

)+

Now consider a layer [a, b] located somewhere between a1 and a3, e.g. the first or the second layer.
(Here we use, for the first and only time, that the third layer does not overlap with the lower ones.) If
a1 ≤ a ≤ b < a3, we have for large σ

1 ≥

((
1 + g (σ)

x− a1

σ

)+
)− 1

g(σ)

[a,b]

≥

((
1 + g (σ)

b− a1

σ

)+
)− 1

g(σ)

≥
(
a3 − b
a3 − a1

)− 1
g(σ)

−→ 1

if g (σ)→∞, because a3−b
a3−a1 > 0. If a1 ≤ a < b ≤ a3, we get analogously

1 ≥

((
1 + g (σ)

x− a1

σ

)+
)− 1

g(σ)

[a,b]

≥
(
a3 − x
a3 − a1

)− 1
g(σ)

[a,b]

=
1

b− a
(a3 − a1)

1
g(σ)

1− 1
g(σ)

[
(a3 − a)

1− 1
g(σ) − (a3 − b)1− 1

g(σ)

]
−→ 1

These two cases cover all possible locations of the first layer, such that we have limσ↗∞R1 (g (σ) , σ) = 1.
The same limit holds for R2, but here it remains to prove the situation a2 = b2 = a3 < b3, which requires
some extra reasoning about g (σ). This function was constructed such that Φ∗(∗)2 (g (σ) , σ) = u3

r2
. For a

proper third layer this can be equivalently written as E3

R2
(g (σ) , σ) = e3

r2
, notably for both Φ∗2 and Φ∗∗2 .

For large σ, where ultimately g (σ) < 0, we have

E3 (g (σ) , σ) ≤ E (a1, a3,∞, g (σ) , σ) =
σ

1− g (σ)

(
1 + g (σ)

a3 − a1

σ

)1− 1
g(σ)

and get with

R2 (g (σ) , σ) =

(
1 +

g (σ)

σ
(a3 − a1)

)− 1
g(σ)

e3

r2
=
E3

R2
(g (σ) , σ) ≤ σ

1− g (σ)

(
1 + g (σ)

a3 − a1

σ

)
<

σ

−g (σ)

(
1 + g (σ)

a3 − a1

σ

)
=

σ

−g (σ)
− (a3 − a1)

or equivalently σ
−g(σ) >

e3
r2

+ a3 − a1. So, we have

1 ≥ R2 (g (σ) , σ) =

(
1− −g (σ)

σ
(a3 − a1)

)− 1
g(σ)

>

(
1− a3 − a1

e3/r2 + a3 − a1

)− 1
g(σ)

=

(
e3/r2

e3/r2 + a3 − a1

)− 1
g(σ)

−→ 1
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if g (σ)→∞, because e3/r2
e3/r2+a3−a1 > 0. Overall we have shown that the upper limit of R2

R1
on the contour

line equals 1, which is the supremum of the possible given RRoL ratios r2
r1
∈ (0, 1). The first half of the

surjectivity of Φ(∗∗) is proved.
To finalize, let us now look at the opposite endpoint. We have calculated the limit ξq = limσ↘0 g (σ)

in the preceding lemma and found it to be always finite. Thus, we can use the continuous extension of
Φ
∗(∗)
1 to the ξ-axis bordering ∆∗ as specified in Lemma B.8, and get

lim
σ↘0

Φ
∗(∗)
1 (g (σ) , σ) = Φ

∗(∗)
1 (ξq, 0) =

R̃2

R̃1

(ξq)

This notably embraces the case b3 = ∞, a2 = a1, where ξq = 1. Here Φ∗∗ is restricted to ξ < ξsup = 1,
but Φ∗∗1 is well defined for ξ ≥ 1 and continuously extendable to the whole non-negative ξ-axis.

Let us evaluate Φ∗(∗)1 (ξq, 0), recalling from Lemma B.8 in particular the values ξ where Φ∗(∗)1 (ξ, 0)

equals 0. It turns out that Φ∗(∗)1 (ξq, 0) = 0, or equivalently the surjectivity of Φ(∗∗), holds in a number of
cases, but not always, namely:

If the first layer is a threshold (a1 = b1), Φ
∗(∗)
1 (ξq, 0) = 0 irrespective of ξq, such that Φ∗(∗) is surjective.

If the third layer is unlimited, we have ξq ≤ 1 and thus Φ∗∗1 (ξq, 0) = 0. So, Φ∗∗ is surjective.
In the remaining case of a proper bottom layer and a limited top layer, where a1 < b1, b3 < ∞ and

thus a1 < a2 and u3 = r3, we have with %i = R̃i+1/R̃i, due to the preceding lemma:

Φ∗1 (ξq, 0) = %1 (ξq) =
R̃2

R̃1

( R̃3

R̃2

)−1(
r3

r2

) = %1

(
%−1

2

(
r3

r2

))
To evaluate this, recall from Lemmas B.8 and B.12 that in the present case we have the following situation:
The function %2 (ξ) is strictly increasing on [0,∞), having the image [0, 1). ξ0 = %−1

2

(
r3
r2

)
is well defined

and positive. The function %1 (ξ) equals 0 for ξ ∈ [0, 1] and increases strictly on [1,∞). So, Φ∗1 (ξq, 0) may
equal 0, namely iff %−1

2

(
r3
r2

)
≤ 1 or equivalently

r3

r2
≤ %2 (1) =

R̃3 (1)

R̃2 (1)
, R̃i (1) = (x− a1)

−1
[ai,bi]

=

{
1

bi−ai ln bi−a1
ai−a1 ai < bi

1
ai−a1 ai = bi

This is a sufficient and easily verifiable condition for the existence of a solution of the three-layer problem.
So, if r3

r2
≤ %2 (1) < 1, which qualitatively means that r3

r2
is not too large, the three-layer problem

can be solved irrespective of r2
r1
. Things are more complex for rather large r3

r2
, namely if r3

r2
> %2 (1).

Then Φ∗1 (ξq, 0) > 0, such that the three-layer problem has a solution only when r2
r1
> Φ∗1 (ξq, 0), which

qualitatively means that r2
r1

must be rather large too. Overall we can infer (very qualitatively) that the
three-layer problem is hard to solve if r3r2 is large and r2

r1
is small, or equivalently if r2, which is located

in the interval (r3, r1), is much closer to r3 than to r1.
Summing up, in the case a1 < b1, b3 <∞ the applicable layer ratio functions, i.e., Φ∗ and for proper

layers also Φ, are not surjective; here for a solution of the three-layer problem the given ri must meet a
technical condition, which reads

r2

r1
> Φ∗1 (ξq, 0) = %1

(
%−1

2

(
r3

r2

))
This yields the image of Φ∗, namely Φ∗(∆) =

{
(z1, z2) ∈ (0, 1)

2 ∣∣ z1 > %1

(
%−1

2 (z2)
)}

, a proper subset of

(0, 1)
2. If we convert, for proper layers, RRoL’s into risk premiums, we get analogously Φ (∆) as asserted

above.

Remark B.15. There is an intuitive interpretation for the function %−1
2 in the technical condition. Recall

Remark 3.5 stating that R̃i reflects the RRoL of the shifted layer [ai − a1, bi − a1] for (single-parameter)
Pareto distributed losses with parameter α = 1

ξ > 0, plus a formal extension thereof for layers having
attachment point 0. In the case where the technical condition applies, we have a2 > a1, such that for the
shifted second and third layer the Pareto model is properly applicable. So, if r3r2 is the given RRoL ratio

of third and second layer, then %−1
2

(
r3
r2

)
is the (unique) parameter ξ for which the Pareto model with

parameter α = 1
ξ reproduces this ratio for the shifted third and second layer. In reinsurance terminology:

%−1
2

(
r3
r2

)
is the Pareto ξ (the inverse of the mostly used Pareto α) between the layers (Riegel, 2008).
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