

ulm university universität **UUUIM** 



Demand for retirement products: An analysis of individual welfare

Joint with Manuel Rach Ulm-Kaiserslautern Workshop

An Chen | Ulm University October 4 2021

## Motivation I

Aging society:

complex challenging societally important



One possible way to deal with longevity risk: Innovative retirement products such as Group self-annuitization, pooled annuity funds and tontines ([Piggott et al., 2005], [Valdez et al., 2006], [Stamos, 2008], [Sabin, 2010], [Donnelly et al., 2013, Donnelly et al., 2014], and [Milevsky and Salisbury, 2015]).

#### Motivation II: an observation

- Actuarial literature on retirement products:
  - Many innovative retirement products whose benefits depend on the mortality realizations have been discussed in the last several years (e.g. [Milevsky and Salisbury, 2015] and [Chen et al., 2019])
- (Public) economic literature on retirement products
  - annuity puzzle: mainly regular annuities are discussed (e.g. [Yaari, 1965], [Davidoff et al., 2005], [Hu and Scott, 2007], [Bommier et al., 2011])

#### ► This paper:

- We aim to combine these two streams of the literature
- We focus on the changes in an agent's and social planners' choices for retirement products (if mortality-linked products are additionally provided), and wealth transfers among agents.

## What do we specifically analyze in this paper?

- We extend [Bommier et al., 2011]
  - [Bommier et al., 2011] study the demand for regular annuities under temporal risk aversion: Individuals might be risk-averse with respect to their future lifetime.
- by allowing access to an innovative plan depending on the realized survival probabilities, like tontines (in addition to traditional annuities)
- and (in social planner's problem considering two groups of individuals), allowing for differential mortality, wealth and safety loadings
- we study the demand for retirement products both from individual and social planner's viewpoint

#### Main questions answered in the paper

Under temporal risk neutrality and actuarially fair pricing, it is optimal to invest all wealth in annuities ([Yaari, 1965]).
How is the optimal demand for the retirement product

How is the optimal demand for the retirement product under temporal risk aversion?

- Will the introduction of tontines crowd out the existence of annuities?
  - Do tontines gain or lose attractiveness under temporal risk aversion and can they be a beneficial supplement to annuities for agents exhibiting temporal risk aversion?
- In the social planner's problem, how does the wealth transfer occur? What are crucial deciding factors?

#### Selected results

- Temporal risk aversion can increase the demand for tontines even in an actuarially fair pricing framework.
- It is almost always optimal for individuals to invest in both tontines and annuities → no crowding-out effect
- Mostly, the living-longer-type benefits from the living-shorter-type ([Weil and Fisher, 1974], [Brown, 2002] and [Bommier et al., 2011] for annuities)
  - Note: it holds if the wealth level of the living-longer-type does not exceed that of the the living-shorter-type.
  - However: If more wealth is assigned to the living-longer type, the wealth transfer can be reversed.

## What comes as next?

Main assumptions

- Individual retirement problems
  - a market exclusively with tontines
  - a market exclusively with annuities
  - a market with annuities and tontines
- Government's problem
  - a market exclusively with tontines
  - a market exclusively with annuities
  - a market with annuities and tontines

## Assumption about remaining lifetime

- Let *T<sub>x</sub>* be the random remaining lifetime of an agent aged *x* years and {*µ<sub>x+t</sub>*}<sub>t≥0</sub> be the (possibly stochastic) force of mortality process of the agent.
- Further, we define the conditional survival probabilities  $S(t) := e^{-\int_0^t \mu_{x+s} ds}$ .
- We assume that

$$\mathcal{S}'(t) = rac{\mathrm{d}\mathcal{S}(t)}{\mathrm{d}t} < 0$$

and that  $S(\infty) = 0$ .

• We define the survival curve:  $s(t) = \mathbb{E}[S(t)]$ 

## Products under consideration: Annuity and Tontine

- Annuity: Deterministic payoff c(t) until death.
- Tontine with fully diversified unsystematic mortality risk: Payoff d(t)/S(t) until death, where d(t) is deterministic.
  - This is the tontine design introduced by [Milevsky and Salisbury, 2015] with an infinitely large pool size.
- An agent who purchases both products receives the payoff

$$\mathcal{C}(t) = \mathbf{c}(t) + \frac{\mathbf{d}(t)}{\mathbf{S}(t)}$$

Expected value principle used for premium calculation

- Assume that r(t) is a deterministic interest rate curve.
- Premium of the tontine:

$$\mathcal{P}_0^d = (1 + \delta_d) \int_0^\infty e^{-\int_0^t r(s) \mathrm{d}s} \cdot d(t) \mathrm{d}t.$$

Premium of the annuity:

$$P_0^a = (1 + \delta_a) \int_0^\infty e^{-\int_0^t r(s) \mathrm{d}s} \cdot s(t) \cdot c(t) \mathrm{d}t.$$

• An agent purchasing both pays  $P_0^a + P_0^d$ .

## Individual preferences

 Following [Bommier et al., 2011], the expected lifetime felicity is then given by

$$EU(\boldsymbol{C}) = \mathbb{E}\left[\Phi\left(\int_0^{T_x} \alpha(t) u(\boldsymbol{C}(t)) \mathrm{d}t\right)\right].$$

- where α(t) is a subjective discount factor, u(·) a strictly increasing and concave utility function, and C = {C(t)}<sub>t≥0</sub> a (possibly stochastic) payoff of a retirement product.
- Temporal risk aversion characterized by Φ: Φ is a twice differentiable function satisfying Φ<sup>"</sup> ≤ 0 and u(·) a CRRA utility function.

Individual problem with tontines

A policyholder who purchases a tontine with an initial wealth W<sub>0</sub> faces the following optimization problem:

$$\max_{d(t)} \mathbb{E} \left[ \Phi \left( \int_0^{T_x} \alpha(t) u \left( \frac{d(t)}{S(t)} \right) dt \right) \right]$$
  
subject to  $(1 + \delta_d) \int_0^\infty e^{-\int_0^t r(s) ds} \cdot d(t) dt \le W_0.$ 

## Approximation method

Following [Bommier, 2006] (applied for annuity), we obtain the following additive approximation for the objective function in tontine case:

$$\begin{split} \mathsf{E} U(\mathbf{C}) &\approx \mathbb{E} \left[ \int_0^\infty \mathcal{S}(t)^\gamma \beta(t) \alpha(t) u(\mathbf{d}(t)) \, \mathrm{d}t, \right] \\ &= \int_0^\infty \kappa_\gamma(t) \alpha(t) u(\mathbf{d}(t)) \, \mathrm{d}t, \end{split}$$

where  $\kappa_{\gamma}(t) := \mathbb{E}\left[\mathcal{S}(t)^{\gamma}\beta(t)\right]$ , and

$$\beta(t) := -\frac{1}{S(t)} \int_t^\infty S'(s) \cdot \Phi'\left(\int_0^s \alpha(\tau) d\tau\right) ds.$$

## Theorem: optimal tontine payoffs

The optimal tontine payoff is given by

$${oldsymbol d}^*(t) = \left(rac{(1+\delta_d)\,\lambda_d {oldsymbol e}^{-\int_0^t r(s) ds}}{\kappa_\gamma(t) lpha(t)}
ight)^{-rac{1}{\gamma}},$$

where the Lagrangian multiplier  $\lambda_d$  is, for all  $\gamma > 0$ , given by

$$\lambda_d = \left(\frac{1+\delta_d}{W_0}\int_0^\infty e^{-\int_0^t r(s)ds} \cdot \left(\frac{(1+\delta_d)e^{-\int_0^t r(s)ds}}{\kappa_\gamma(t)\alpha(t)}\right)^{-\frac{1}{\gamma}} \mathrm{d}t\right)^\gamma.$$

For  $\gamma \neq 1$ , the expected discounted lifetime felicity is then given by

$$U_d = \frac{\lambda_d}{1 - \gamma} \cdot \frac{W_0}{1 + \delta_d}$$

Numerical illustration: Stochastic mortality law

► Following e.g. [Lin and Cox, 2005], we apply a random shock *ϵ* taking values in (-∞, 1) to the Gompertz mortality rates:

$$\mu_{x+t} = (1-\epsilon)\frac{1}{b}e^{\frac{x+t-m}{b}},$$

where m is the modal age at death and b is the dispersion coefficient.

# Numerical example

| Initial wealth              | Utility function 1                                                       | Utility function 2                                 |
|-----------------------------|--------------------------------------------------------------------------|----------------------------------------------------|
| <i>W</i> <sub>0</sub> = 100 | $\Phi(y) = rac{1}{	heta} - rac{1}{	heta} e^{-	heta y},  	heta = 0.035$ | $u(y) = rac{y^{1-\gamma}}{1-\gamma},  \gamma = 3$ |
| Risk-free rate              | Subjective discount rate                                                 | Safety loading                                     |
| r(t) = r = 0.01             | $lpha(t)=oldsymbol{e}^{-rt}$                                             | $\delta_d = \delta_a = 0$                          |
| Initial age                 | Longevity shock                                                          | Gompertz law                                       |
| <i>x</i> = 65               | $\epsilon \sim \mathcal{N}_{(-\infty,1)} \left(-0.0035, 0.0814^2 ight)$  | <i>m</i> = 88.721, <i>b</i> = 10                   |

**Table:** Base case parameters.  $\theta$  is chosen similarly to [Bommier et al., 2011]. We assume a constant risk-free interest rate close to zero (cf. [Statista, 2019]).  $\delta_a = \delta_d = 0$  means that we are in an actuarially fair pricing framework. Concerning the longevity shock  $\epsilon$ , we follow [Chen et al., 2019]. The Gompertz parameters are taken from [Milevsky and Salisbury, 2015].

## Optimal tontine payoff



Optimal payout function  $d^*(t)$  over time under temporal risk aversion and temporal risk neutrality (TRN).

Individual problem with annuities

A policyholder who purchases an annuity with an initial wealth W<sub>0</sub> faces the following optimization problem:

$$\max_{c(t)} \mathbb{E} \left[ \Phi \left( \int_0^{T_x} \alpha(t) u(c(t)) dt \right) \right]$$
  
subject to  $(1 + \delta_a) \int_0^\infty e^{-\int_0^t r(s) ds} \cdot s(t) \cdot c(t) dt \le W_0.$ 

## Theorem: optimal annuity payoffs

$$\boldsymbol{c}^{*}(t) = \left( (1 + \delta_{\boldsymbol{a}}) \, \frac{\lambda_{\boldsymbol{a}} \boldsymbol{e}^{-\int_{0}^{t} \boldsymbol{r}(\boldsymbol{s}) d\boldsymbol{s}}}{\overline{\beta}(t) \alpha(t)} \right)^{-\frac{1}{\gamma}},$$

where the Lagrangian multiplier  $\lambda_a$  is, for all  $\gamma > 0$ , given by

$$\lambda_{a} = \left(\frac{1+\delta_{a}}{W_{0}}\int_{0}^{\infty} e^{-\int_{0}^{t} r(s)ds} \cdot s(t) \cdot \left(\frac{(1+\delta_{a})e^{-\int_{0}^{t} r(s)ds}}{\overline{\beta}(t)\alpha(t)}\right)^{-\frac{1}{\gamma}} \mathrm{d}t\right)^{\gamma}$$

with  $\overline{\beta}(t) = -\frac{1}{s(t)} \int_{t}^{\infty} s'(s) \cdot \Phi'\left(\int_{0}^{s} \alpha(\tau) d\tau\right) ds$ . For  $\gamma \neq 1$ , the expected discounted lifetime felicity is then given by

$$U_a = \frac{\lambda_a}{1-\gamma} \cdot \frac{W_0}{1+\delta_a}.$$

## Optimal annuity payoff



Optimal payout function  $c^*(t)$  over time under temporal risk aversion and temporal risk neutrality (TRN)

# Combined investment

A policyholder who purchases an annuity along with a tontine with an initial wealth W<sub>0</sub> faces the following optimization problem:

$$\begin{split} \max_{c_{ad}(t),d_{ad}(t)} \mathbb{E}\left[\int_{0}^{\infty} S(t)\beta(t)\alpha(t)u\left(c_{ad}(t) + \frac{d_{ad}(t)}{S(t)}\right)dt\right]\\ \text{subject to } (1+\delta_{a})\int_{0}^{\infty} e^{-\int_{0}^{t}r(s)ds}s(t)c_{ad}(t)dt\\ + (1+\delta_{d})\int_{0}^{\infty} e^{-\int_{0}^{t}r(s)ds} \cdot d_{ad}(t)dt \leq W_{0}. \end{split}$$

Can be solved by numerical procedures.

## Theorem

Let 
$$\kappa_{\gamma}(t) := \mathbb{E} \left[ S(t)^{\gamma} \beta(t) \right]$$
 and  
 $\overline{\beta}(t) := -\frac{1}{s(t)} \int_{t}^{\infty} s'(s) \cdot \Phi'\left( \int_{0}^{s} \alpha(\tau) d\tau \right) ds.$ 

(i) If and only if

$$\delta_{a} \leq \underline{\delta}_{a} := \inf_{t \geq 0} \frac{\overline{\beta}(t)}{\mathbb{E}\left[\beta(t)\right]} (1 + \delta_{d}) - 1, \tag{1}$$

the optimal solution is given by  $c_{ad}(t) = c^*(t)$ ,  $d_{ad}(t) = 0$ , i.e. it is optimal to invest all the initial wealth in the optimal annuity.

## Theorem

#### (ii) If and only if

$$\delta_{a} \geq \overline{\delta}_{a} := \sup_{t \geq 0} \frac{\kappa_{\gamma+1}(t)}{\kappa_{\gamma}(t)s(t)} (1 + \delta_{d}) - 1,$$
(2)

the optimal solution is given by  $d_{ad}(t) = d^*(t)$ ,  $c_{ad}(t) = 0$ , *i.e. it is optimal to invest all the initial wealth in the optimal tontine.* 

(iii) If both condition (1) and (2) are not fulfilled, it is optimal for the agent to invest positive fractions of wealth in both the annuity and the tontine.

## Some numbers: critical bounds of the annuity loading

| θ                       | TRN      | 0.035    | 0.07     | 0.105    | 0.14     |
|-------------------------|----------|----------|----------|----------|----------|
| <u>δ</u> a              | 0        | -0.0014  | -0.0027  | -0.0039  | -0.0051  |
| $\overline{\delta}_{a}$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |

Analysis of the bounds (1) and (2) depending on the temporal risk aversion  $\theta$ .

# Optimal annuity and tontine payoff



Optimal payout functions in the portfolio for an agent exhibiting temporal risk aversion.

## Government's problem: assumption

We consider two groups of agents i = H, L, where we assume

$$\mu_{x+t}^{H}(\omega) < \mu_{x+t}^{L}(\omega)$$

for all  $\omega \in \Omega$ , i.e. agents of type *H* have (on average) a longer remaining lifetime than type-*L*-agents.

- ▶ We introduce the survival probabilities for a member of the groups as  $s_i(t) = \mathbb{E}[S_i(t)] = \mathbb{E}\left[e^{-\int_0^t \mu_{x+t}^{(i)}}\right], i = H, L.$
- $n_H$  and  $n_L$  are fractions of agents in the two groups.

## Social planner's optimization problem with tontines

The problem of the social planner is then given by

$$\begin{split} \max_{d_{L}(t),d_{H}(t)} n_{L} \int_{0}^{\infty} \kappa_{\gamma}^{L}(t) \alpha(t) u\left(d_{L}(t)\right) \mathrm{d}t \\ &+ n_{H} \int_{0}^{\infty} \kappa_{\gamma}^{H}(t) \alpha(t) u\left(d_{H}(t)\right) \mathrm{d}t \\ \text{subject to } n_{L}(1 + \delta_{d}^{L}) \int_{0}^{\infty} e^{-\int_{0}^{t} r(s) \mathrm{d}s} \cdot d_{L}(t) \mathrm{d}t \\ &+ n_{H}(1 + \delta_{d}^{H}) \int_{0}^{\infty} e^{-\int_{0}^{t} r(s) \mathrm{d}s} \cdot d_{H}(t) \mathrm{d}t \\ &\leq n_{L} W_{0}^{L} + n_{H} W_{0}^{H}. \end{split}$$

#### Theorem

The optimal tontine payoffs are given by

$$d_i^*(t) = \left(\frac{\left(1 + \delta_d^{(i)}\right)\lambda_d^G e^{-\int_0^t r(s)ds}}{\kappa_{\gamma}^{(i)}(t)\alpha(t)}\right)^{-\frac{1}{\gamma}},$$

where the Lagrangian multiplier  $\lambda_d^G$  is given by

$$\begin{split} \lambda_d^G &= \left( \left( n_L W_0^L + n_H W_0^H \right)^{-1} \left( n_L \left( 1 + \delta_d^H \right) \int_0^\infty e^{-\int_0^t r(s) ds} \cdot \left( \frac{\left( 1 + \delta_d^L \right) e^{-\int_0^t r(s) ds}}{\kappa_\gamma^L(t) \alpha(t)} \right)^{-\frac{1}{\gamma}} \mathrm{d}t \right. \\ &+ n_H \left( 1 + \delta_d^H \right) \int_0^\infty e^{-\int_0^t r(s) ds} \cdot \left( \frac{\left( 1 + \delta_d^H \right) e^{-\int_0^t r(s) ds}}{\kappa_\gamma^H(t) \alpha(t)} \right)^{-\frac{1}{\gamma}} \mathrm{d}t \right) \\ \end{split}$$

The collective expected discounted lifetime felicity is then given by

$$U_d^G = \frac{\lambda_d^G}{1-\gamma} \left( n_H W_0^H + n_L W_0^L \right).$$

## A numerical illustration

We rely on the base case parameters summarized in Table 1 and consider the additional parameters summarized in Table 2.

| Pool size         | Safety loadings                       | Modal ages               |
|-------------------|---------------------------------------|--------------------------|
| $n_H = n_L = 0.5$ | $\delta_d^{(i)} = \delta_a^{(i)} = 0$ | $m_H = 88.721, m_L = 84$ |

Table: Base case parameter setup.

## Numerical illustration for wealth transfer I

|                                             | Н     | L     |  |  |
|---------------------------------------------|-------|-------|--|--|
| $W_0^H = W_0^L = 100, n_H = n_L = 0.5$      |       |       |  |  |
| $\theta = 0.035$                            | 53.60 | 46.40 |  |  |
| TRN                                         | 54.41 | 45.59 |  |  |
| $W_0^H = 200, W_0^L = 100, n_H = n_L = 0.5$ |       |       |  |  |
| $\theta = 0.035$                            | 80.40 | 69.60 |  |  |
| TRN                                         | 81.61 | 68.39 |  |  |

Present values of consumption for agents of the two groups.

## Conclusion

- We study the optimal demand for retirement products in the presence of temporal risk aversion and markets offering annuities and mortality-linked products like tontines.
  - for a single agent
  - for a social planner
- Risk aversion with respect to the time of death can increase the demand for tontines even in an actuarially fair pricing framework.
  - Agents subject to temporal risk aversion prefer to invest positive fractions of wealth in both annuities and tontines to full annuitization even in perfect annuity markets.
- The wealth ratio of the two groups turns out to be the main driving factor for the direction of the wealth transfers.

Seite 32 An Chen, Ulm University | October 4 2021

# Many thanks for your attention!

#### **References I**



Bommier, A. (2006).

Uncertain lifetime and intertemporal choice: risk aversion as a rationale for time discounting.

International Economic Review, 47(4):1223–1246.



Bommier, A., Leroux, M.-L., and Lozachmeur, J.-M. (2011). On the public economics of annuities with differential mortality. *Journal of Public Economics*, 95:612–623.



Brown, J. (2002).

Differential mortality and the value of individual account retirement annuities. In *The distributional aspects of social security and social security reform*, pages 401–446. University of Chicago Press.



Chen, A., Hieber, P., and Klein, J. K. (2019). Tonuity: A novel individual-oriented retirement plan. *ASTIN Bulletin: The Journal of the IAA*, 49(1):5–30.



Davidoff, T., Brown, J. R., and Diamond, P. A. (2005). Annuities and individual welfare.

American Economic Review, 95(5):1573–1590.

#### **References II**



Donnelly, C., Guillén, M., and Nielsen, J. P. (2013). Exchanging uncertain mortality for a cost. Insurance: Mathematics and Economics, 52(1):65–76.



Donnelly, C., Guillén, M., and Nielsen, J. P. (2014). Bringing cost transparency to the life annuity market. *Insurance: Mathematics and Economics*, 56:14–27.



Hu, W.-Y. and Scott, J. S. (2007). Behavioral obstacles in the annuity market. *Financial Analysts Journal*, 63(6):71–82.



Lin, Y. and Cox, S. H. (2005). Securitization of mortality risks in life annuities. Journal of Risk and Insurance, 72(2):227–252.



Milevsky, M. A. and Salisbury, T. S. (2015). Optimal retirement income tontines. *Insurance: Mathematics and Economics*, 64:91–105.

## **References III**



Piggott, J., Valdez, E. A., and Detzel, B. (2005). The simple analytics of a pooled annuity fund. *Journal of Risk and Insurance*, 72(3):497–520.



Sabin, M. J. (2010). Fair tontine annuity.

Available at SSRN: https://ssrn.com/abstract=1579932.



Stamos, M. Z. (2008).

Optimal consumption and portfolio choice for pooled annuity funds. *Insurance: Mathematics and Economics*, 43(1):56–68.



#### Statista (2019).

Average risk-free investment rate in germany 2015-2019.

Website.

Available online on https://www.statista.com/statistics/885774/ average-risk-free-rate-germany/; accessed on October 23, 2019.



Valdez, E. A., Piggott, J., and Wang, L. (2006). Demand and adverse selection in a pooled annuity fund. *Insurance: Mathematics and Economics*, 39(2):251–266.

## **References IV**



#### Weil, R. L. and Fisher, L. (1974).

TIAA/CREF: Who gets what? An analysis of wealth transfers in a variable annuity.

The Journal of Business, 47(1):67–87.



Yaari, M. E. (1965).

Uncertain lifetime, life insurance, and the theory of the consumer.

The Review of Economic Studies, 32(2):137–150.