

Micro-level Prediction of Outstanding Claim Counts using Neural Networks

Alexander Rosenstock ARAG SE

DAV/DGVFM-Jahrestagung, 27.-29. April 2022

Given a non-life insurance portfolio, what are the losses I've already incurred for each individual policy?

- Obtain individual-level IBNR and RBNS reserves to inform by-case decision making.
- O Give more accurate reserve estimates for better risk management.
- Quickly detect and adapt to changes in development process.
- Minimize manual calibration effort to save time.

Solution: A micro-level model

- This neccessitates a micro-level approach to modelling insurance claims.
- The RBNS reserve case has been widely studied already.
- We focus on a micro-level claim count model for now.

Our Approach

Several components go hand-in-hand to deliver a complete micro-level claim count model

- 1. A formal process model for occurrence and reporting of claims.
- 2. A new flexible distribution family applicable to reporting delays.
- 3. A neural-network regression approach to fit the flexible distribution model to randomly truncated data.
- Wew approach outperformed Chain Ladder by 50% on real data!

A Claim Process Model

For each policy indexed by *i*, having features $x^{(i)} \in \mathfrak{X}$ – among which the coverage period $C^{(i)} = [t_{\text{start}}^{(i)}, t_{\text{end}}^{(i)}]$, we have a *position-dependent marked* poisson process with intensity $\lambda(x^{(i)}, t)$

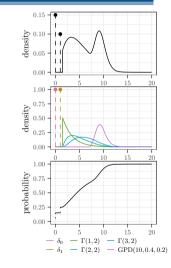
$$\xi^{(i)} = \sum_{j=1}^{N^{(i)}} \delta_{(T_j^{(i)}, Y_j^{(i)}, D_j^{(i)})}$$

N⁽ⁱ⁾ ~ Poi(∫_{C⁽ⁱ⁾} λ(x⁽ⁱ⁾, t) dt): number of incurred claims
 T⁽ⁱ⁾_j ∈ C⁽ⁱ⁾: occurrence dates of these claims
 Y⁽ⁱ⁾_j ∈ 𝔅: features of these claims (e.g. type)
 D⁽ⁱ⁾_j ∈ [0,∞): reporting delay, the time between T⁽ⁱ⁾_j and the filing of the claim with the insurer.

BDEGP: A suitable semi-parametric family \mathcal{F}

$\mathrm{BDEGP}(n,m,\kappa,\varepsilon)$

- n Dirac components at $0, \ldots, n-1$.
- *m* translated *Erlang* components with common scale.
- $GPD_{\mu=\kappa}$ generalized Pareto tail.
- continuous density, by blending the GPD tail with the erlang mixture body on $(\kappa \varepsilon, \kappa + \varepsilon)$.



A Reporting Delay Model

Find a function $q \in \mathcal{G}$ and a distribution family \mathcal{F} on $[0,\infty)$ with parameter space Θ such that the reporting delay distribution of all claims is described by

$$P_{D|X,T,Y} = F_{g(x,t,y)}; \qquad g: \mathfrak{X} \times \bigcup_{i} C^{(i)} \times \mathfrak{Y} \to \Theta$$

 \mathcal{G} will be a family of neural networks and $\mathfrak{X},\mathfrak{Y}$ contain all necessary policy-level and claim-level information.

Complete Method

- 1. Fit a BDEGP-Family to the complete reporting delay distribution.
- 2. Train a neural network to predict the reporting delay distribution parameters for each individual reported claim.
- Compute the probability that the claim was reported by time τ in 3. the first place.
- 4. Use

$$\hat{N} := \frac{1}{P(T + D_j^{(i)} \le \tau | X = x^{(i)}, \, T \in I(t_j^{(i)}), \, Y = y_j^{(i)})}$$

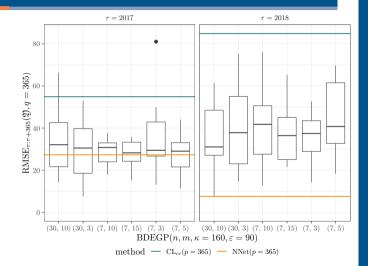
as a predictor for the total number of $claims^1$.

 $^{{}^{1}}I(t)$ is a suitably small region around the accident time t.

DAV/DGVFM-Jahrestagung, 27.-29. April 2022

Proven on real data

New approach outperformed Chain Ladder by 50% on real data!



The proposed predictor can be improved even more by completing the process model, i.e. by fitting a distribution to $Y_j^{(i)}|X^{(i)}, T_j^{(i)}$ and estimating the claim frequency $\lambda(x^{(i)}, t)$ to:

$$\hat{N}^* \coloneqq \text{reported claims} + \int_{C^{(i)}} \lambda(x^{(i)}, t) \, \mathrm{d}t \cdot P(T + D_j^{(i)} > \tau | X = x^{(i)})$$
$$= \text{reported claims} + \text{expected IBNR count}$$

Implemented as an R package

We implemented an **R** package that

- Can fit distributions to randomly truncated data.
- Supports the new BDEGP family (among many others).
- Integrates with **TensorFlow**.

https://github.com/AshesITR/reservr

R> remotes::install_github("AshesITR/reservr")
Preprint available on SSRN: https://dx.doi.org/10.2139/ssrn.3949754