

Bayesian Neural Network Perspectives for Actuarial Science

Review and Motor Claims Analysis Case Study

EAA e-Conference on Data Science & Data Ethics

12 May 2022

Aurélien COULOUMY & Akli KAIS CCR Group With the kind contribution of Eric LAVERGNE

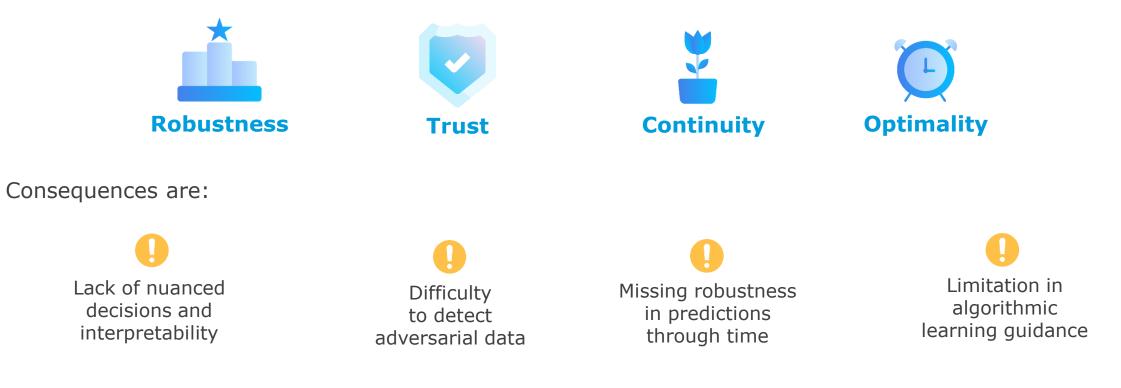
1. INTRODUCTION

۲

1. INTRODUCTION (1/2)

WHAT IS WRONG WITH COMMON ML APPROACHES

- **ML techniques are becoming standards** in many areas of the insurance industry with many successful implementations in terms of model performance, process automation or ease of use.
- However, some issues remain, including:

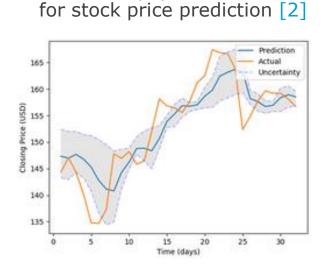


EAA e-Conference on Data Science & Data Ethics | 12 May 2022 | Page 3

1. INTRODUCTION (2/2)

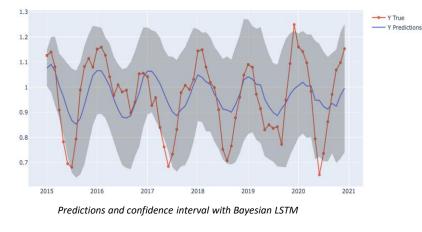
UNCERTAINTY USING BNNS

- Approaches that consider the **notion of "uncertainty"** could address such issues.
- Bayesian Neural Networks (BNN) are interesting candidates that allow to know when and what the model doesn't know [1] and to give uncertainty estimations.
- This paradigm also fit well with actuarial science which is based on risk/uncertainty estimation:

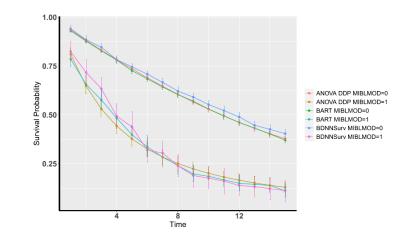


Uncertainty quantification

Forecasting of SWI indicators for drought severity prediction [3]



Survival analysis prediction and uncertainty using pseudo values [4]



[1] Y Gal, (2016) Uncertainty in Deep Learning, http://www.cs.ox.ac.uk/people/yarin.gal/website//thesis/thesis.pdf,

[2] Chandra R, He Y, (2021) Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic, https://doi.org/10.1371/journal.pone.0253217
 [3] Internal CCR Group analysis, (2022) SWI indicators prediction

[4] D Feng, L Zhao, (2021) BDNNSurv: Bayesian deep neural networks for survival analysis using pseudo values, https://ids-online.org/journal/JDS/article/1244/info,

2. WHAT ARE BNNS AND UNCERTAINTIES

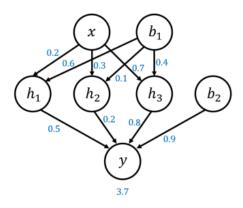
2. BNNS AND UNCERTAINTIES (1/5)

BNN – OVERVIEW

 Classical ML approach: learn the most optimal combinations of weights/parameters minimizing a specified loss function. *

Standard Neural Network

Data - Ethics - Actuary



- Each weight has a single value referred as a **point estimation**.

- Use **differentiation** to find the optimal value such as gradient descent.

 Bayesian ML approach: learn the a posteriori distribution on the model parameters from Bayes' rule. * [5] [6] [7]

Bayesian Neural Network

- Each weight is represented by an **optimal distribution.**
- Use **approximation** methods to draw the optimal posterior distribution.

* Formulas and decompositions available in appendix

[5] N. G. Polson, V. Sokolov et al., (2017) Deep learning: a Bayesian perspective, Bayesian Analysis, vol. 12, no. 4, pp. 1275–1304

[6] J. Lampinen and A. Vehtari, (2001) Bayesian approach for neural networks—review and case studies, Neural Networks, vol. 14, no. 3, pp. 257 – 274,

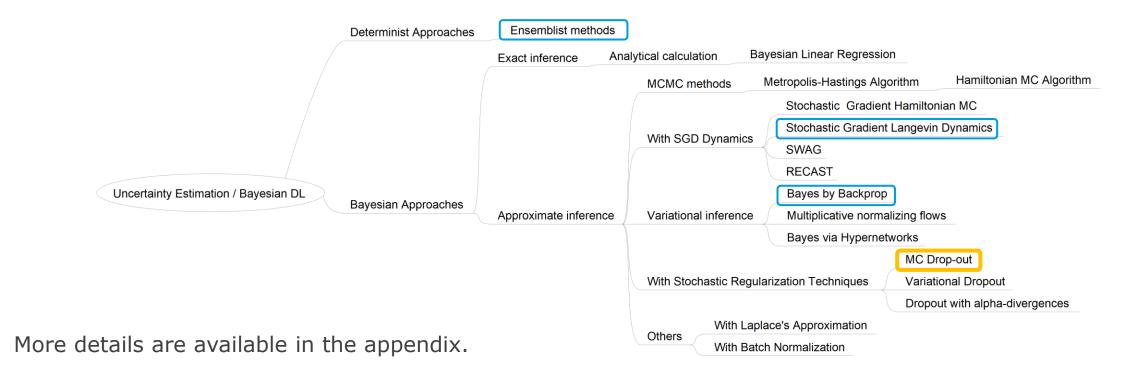
[7] D. M. Titterington, (2004) Bayesian methods for neural networks and related models," Statist. Sci., vol. 19, no. 1, pp. 128–139, 02

•

BNN - APPROXIMATIONS

Data - Ethics - Actuary

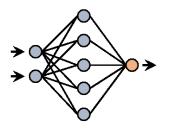
- From a practical perspective, Bayesian inference using Neural Networks is **not trivial**:
 - Impossible computation of Bayes' rule analytically;
 - MCMC methods are costly both regarding computationally and memory.
- Several approximation methods have emerged in recent years:



2. BNNS AND UNCERTAINTIES (3/5)

BNN – MONTE-CARLO DROP OUT

- Dropout refers to randomly dropping out units (in our case nodes) during training.
- Monte Carlo Dropout [8] is currently one of the most practical methods available (because of its easiness)
- It allows to **reinterprets the dropout** as an approximation of the Bayesian approach.
- It continues to use the "stochasticity" of dropout during the prediction/test phase to get several credible models (weights from approximate posteriors).



Monte Carlo Dropout

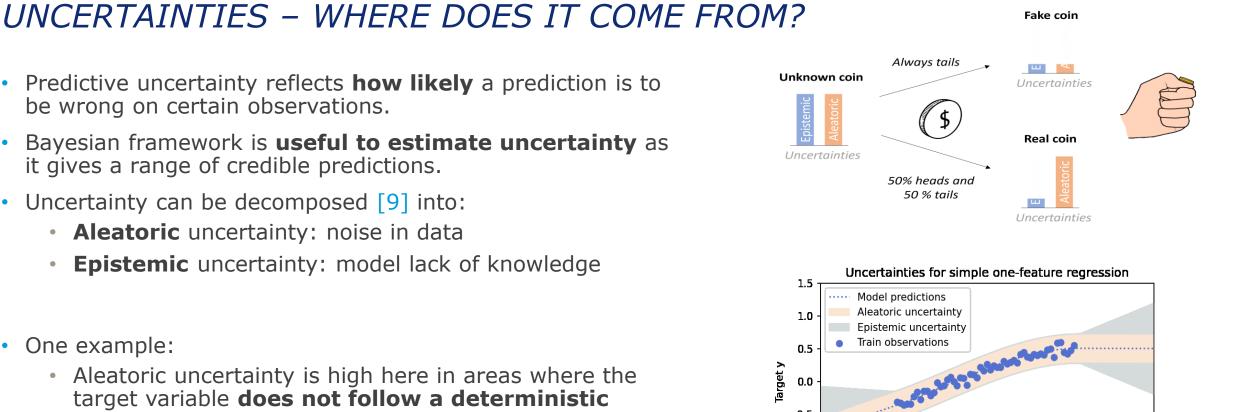
•

•

One example:

Data - Ethics - Actuary

2. BNNS AND UNCERTAINTIES (4/5)



0.0

-0.5

-1.0

-1.5

Global aleatoric uncertainty

Global epistemic uncertainty

- Aleatoric uncertainty is high here in areas where the target variable does not follow a deterministic relationship with the feature variable
- Epistemic uncertainty is high here in areas where there is **insufficient data**

EAA e-Conference on Data Science & Data Ethics | 12 May 2022 | Page 9

0

Feature x

2

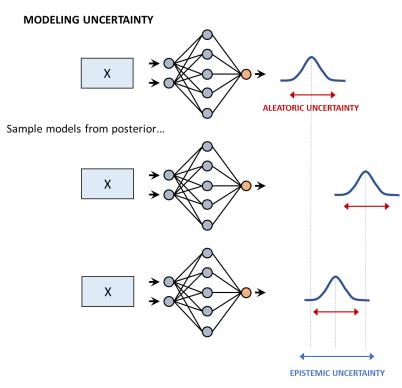
0.1

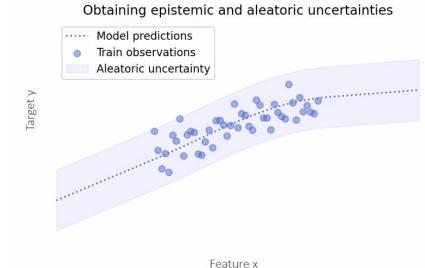
0.46

-2

UNCERTAINTIES - HOW TO ESTIMATE IT?

- Epistemic uncertainty is **modelled with the Bayesian approach** by introducing a distribution on the parameters (posterior)
- Aleatoric uncertainty is modelled using a distribution on the model output (likelihood)





• For classification cases:

"Total predictive uncertainty can be measured by the predictive entropy, i.e. entropy of mean prediction" \ast

• For **regression** cases:

"Total predictive uncertainty can be measured by the total variance of the predictive distribution" *

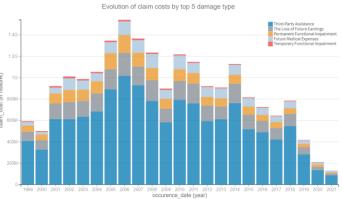
3. SEVERE BODILY INJURY APPLICATION

3. APPLICATION (1/7)

CONTEXT

- French motor insurance portfolio collected for reinsurance purpose. A first "manual" analysis was developed in 2019.
- ~2k severe bodily injury claims from 1999 to 2021, reviewed annually.
- Updated prejudices charges with ~137k observations.
- **Key features** identified: age, sex and socio-professional category of the victim, type of lesion, rate of permanent damage to physical integrity.
- Work will consist of **standard ML regression** with tabular data for predicting the severity of prejudice charges, globally and per type.
- About **45 prejudice types**. We focus on the top 3: Permanent functional deficit, Temporary functional deficit and Third party support.

iew Warnings (23) Reproduction			
ataset statistics		Variable types	
umber of variables	15	Numeric	
lumber of observations	5673	Categorical	
fissing cells	132	Boolean	
lissing cells (%)	0.2%		
Ouplicate rows	0		
Ouplicate rows (%)	0.0%		
otal size in memory	626.1 KiB		
verage record size in memory	113.0 B		



Overview

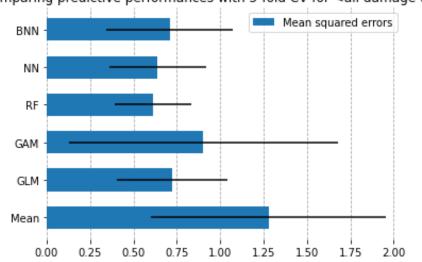
3. APPLICATION (2/7)

ROBUSTNESS

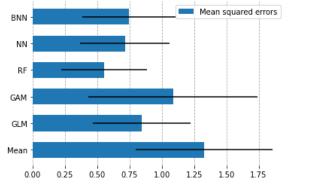
(H)

Are BNNs good enough comparing to standard machine learning, neural networks or actuarial methods? *

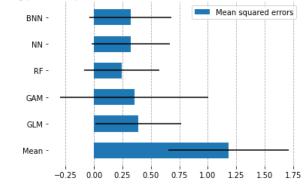
- BNNs provide interesting results with limited volatility, most of the time with equal MSE compared to common NN.
- RF still provide better results and common GLM (not specifically adapted) as well as GAM lag behind.

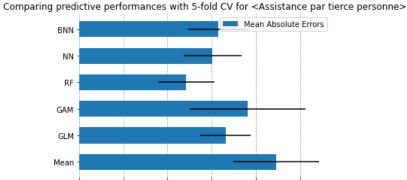


Comparing predictive performances with 5-fold CV for <Assistance par tierce personne>



Comparing predictive performances with 5-fold CV for <Déficit Fonctionnel Permanent>





0.6

10

0.8

0.4

Comparing predictive performances with 5-fold CV for <all damage types>

0.0

0.2

Data - Ethics Actuary

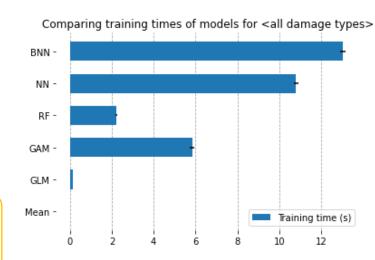
3. APPLICATION (3/7)

ROBUSTNESS

How fast are BNNs? How to ensure that BNNs are viable for production run (regarding both training and inference time)? *

-``@`-

- BNNs require a much longer time to converge for training
- Inference time for BNNs on contrary is quite good, even compared to GLMs.
- Results are not affected by prejudice type task



BNN

NN

RF

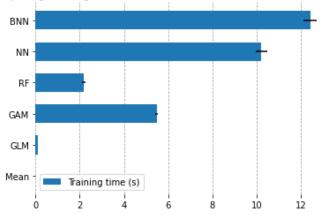
GAM

GLM

Mean

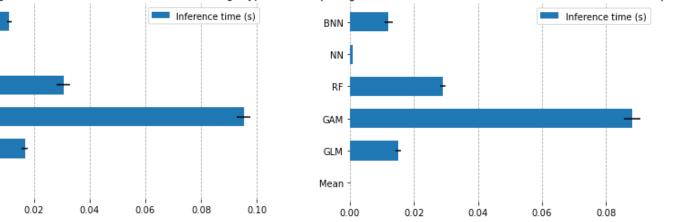
0.00

Comparing training times of models for <Déficit Fonctionnel Temporaire>



Comparing inference times of models for <all damage types> Compari

Comparing inference times of models for <Déficit Fonctionnel Temporaire>



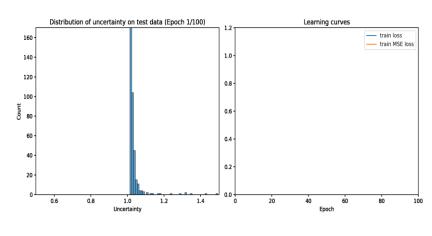
Data - Ethics - Actuary

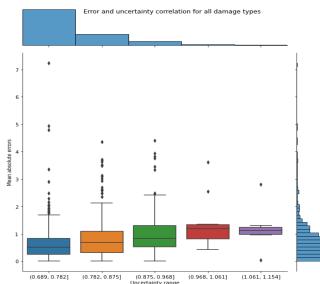
3. APPLICATION (4/7)

TRUST

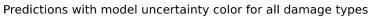
Can we **profile uncertainty** over training time ? How related are uncertainty and error measures?

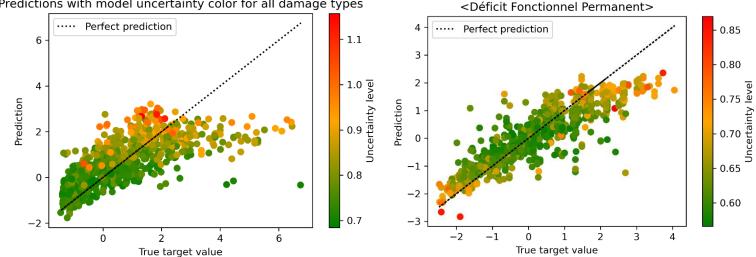
- While loss is decreasing, we clearly observe uncertainty profile flatten.
- The more the error increases the more the uncertainty also increases and becomes more volatile.
- Uncertainty is also observed for data at specific target ranges, with no evident errors.





Predictions with model uncertainty color





EAA e-Conference on Data Science & Data Ethics | 12 May 2022 | Page 15

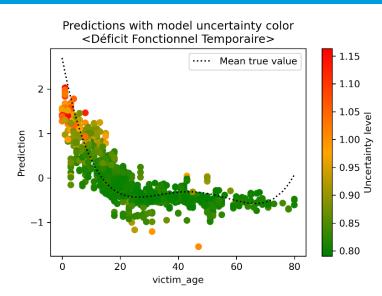
Data - Ethics - Actuary

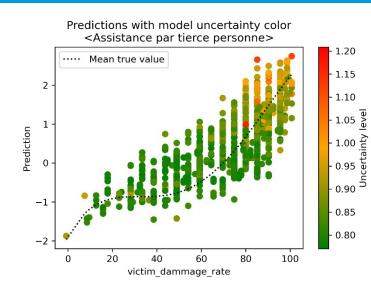
3. APPLICATION (5/7)

TRUST 🔽

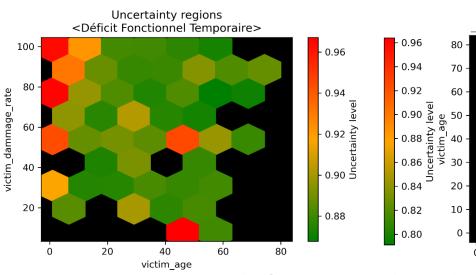
How to formalize **links between uncertainty measure and features** or observations?

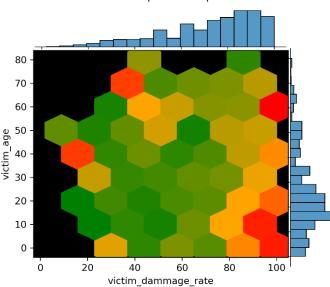
- Using partial dependance plots with uncertainty we can analyze for some feature ranges unlikely predictions.
- Multivariate analysis allows to highlights unknown combinations (missing observation profile).





Uncertainty regions for <Assistance par tierce personne>





EAA e-Conference on Data Science & Data Ethics | 12 May 2022 | Page 16

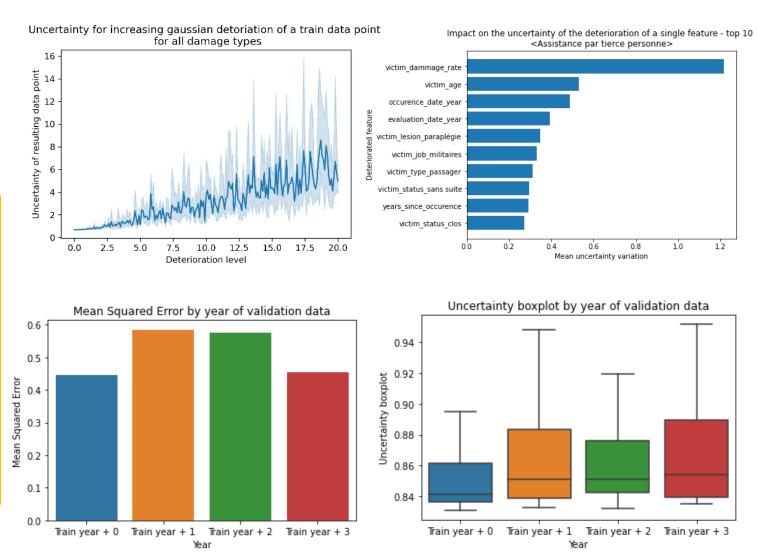
Data - Ethics - Actuary

3. APPLICATION (6/7)

CONTINUITY

How BNNs can help regarding model or data **analysis through time?** How does it **complete drift?**

- Deterioration function allow to demonstrate model adaptability to features changes.
- It appears helpful, in addition of importance feature analysis, to highlight key variables.
- It is also a good complementary tool to follow model drift. We observe here stable MSE while uncertainty increases and becomes volatile after 3 years.



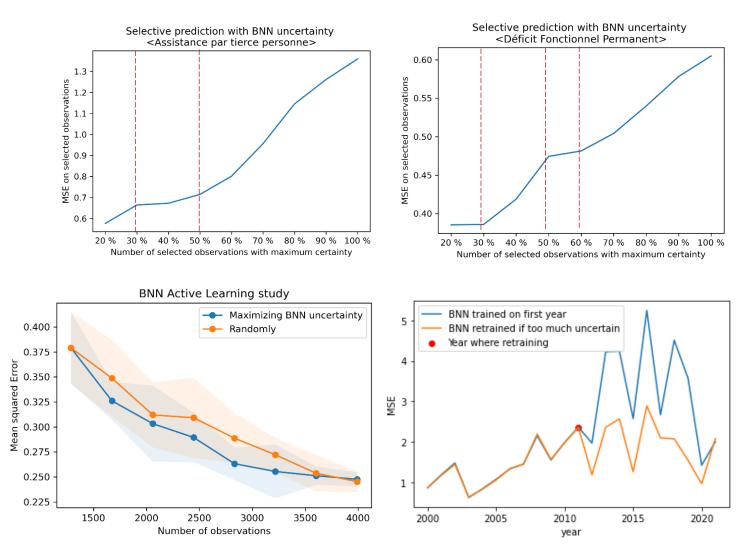
3. APPLICATION (7/7)

OPTIMALITY 💽

How can we benefit from BNNs and **optimize learning costs,** prediction quality, etc.?

-

- During inference, we can define uncertainty threshold to ensure MSE expectations.
- With active learning [11] approaches we can also minimize retraining costs while minimizing also MSE values.
- Finally, we can mix both threshold and active learning to define retraining strategies.



4. CONCLUSION AND PERSPECTIVES

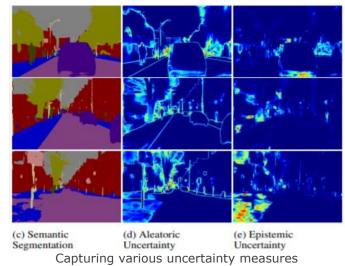
CONCLUSION

- Despite **relative theoretical complexity**, BNNs can be developed to add uncertainty notions into standard • actuarial / ML tasks.
- **Results are promising**, both in terms of time inference, model quality, interpretability capabilities, • continuity add-on, process optimization, etc.
- But we also observe **BNNs drawbacks**: training/test time, difficulty of training (choice of prior • distribution), lack of interpretability chart baselines, etc.
- At the end, there would be many **risks** [12] **not to consider BNNs and model uncertainty**:

Overconfident prediction of a dog [13]

		workclass	Private
workclass	Frivate	fnlwgt	-0.24207
fnlwgt	-1.22549	education	Some-college
education	Doctorate	education-num	-0.227131
aducation-num	2.09553	marital-status	Divorced
narital-status	Married-civ-spouse	occupation	Transport-moving
occupation	Prof-specialty	relationship	Not-in-family
relationship	Husband	race	White
race	White	REX	Male
10X	Male	capital-gain	-0.201885
capital-gain	9.00439	capital-loss	-0.259806
capital-loss	-0,259806	hours-per-week	0.654366
hours-per-week	1.06957	native-country	United-States
native-country	United-States	salary	<50k
salary	>=50k	education-num na	False
education-num_na	False	Name: 13145, dtype:	
Wame: 6300, dtype:		workclass	Self-emp-not-inc
workclass	Self-emp-inc	fnlwgt	1,20672
fnlwgt	0.159757	education	Some-college
education	Doctorate	education-num	-0.227131
education-num	2.09553	marital-status	Married-civ-spouse
marital-status	Married-civ-spouse	occupation	Farming-fishing
occupation	Prof-specialty	relationship	Husband
relationship	Husband	race	White
race	White	sex	Male
sex	Male	capital-gain	-0.201885
capital-gain	9.00439	capital-loss	-0.259806
capital-loss	-0.259806	hours-per-week	3,47774
hours-per-week	2.31517	native-country	United-States
sative-country	United-States	salary	<50)
salary	>=50≥	education-num na	False
education-num_na	False	and a set of the test	20101

Bias and Ethic in tabular data classification with Adults Income [14]



on computer vision tasks [15]

[12] A Nguyen, J. Yosinski, J. Clune, (2014), Deep Neural Networks are Easily Fooled https://arxiv.org/abs/1412.1897

[13] J Ramkissoon (2020) Dealing with Overconfidence in Neural Networks: Bayesian Approach, https://jramkiss.github.io/2020/07/29/overconfident-nn/

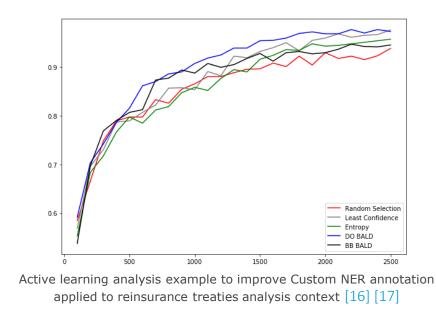
[14] D. Huvnh (2019) Bayesian deep learning with Fastai.

[15] A Kendall, Y Gal, (2017) What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? https://arxiv.org/pdf/1703.04977.pdf

- Several perspectives can be discussed:
 - Deeper exploration of aleatoric or epistemic uncertainty measures relation and representation;
 - Integration such uncertainty measures within daily processes;
 - Synthetic Data Vault (SDV) exploration as "out of domain data driver";
 - Other examples in actuarial science (claim reserving, mortality, etc.) or experienced in CCR Group (Cyber risk, SWI indicators and drought severity, etc.);
 - Other insurance tasks such as NLPs (Custom NER Active learning and Clause classification outliering).

1998								
	3119574.000000	47184563.000000	129571818.000000	205210185.000000	250488154.000000	276516578.000000	289448982.000000	294634712.000000
1999	2611938.000000	48712676.000000	128109553.000000	199696111.000000	251226483.000000	278089709.000000	289787024.000000	296221318.00000
2000	3660623.000000	48578158.000000	131138360.000000	203536066.000000	248153147.000000	275513570.000000	290183175.000000	294503166.00000
2001	1969019.000000	46814727.000000	129874801.000000	200157921.000000	249622859.000000	277553530.000000	291323882.000000	296885103.00000
2002	4136072.000000	51272019.000000	133205433.000000	207331606.000000	250449602.000000	278628322.000000	291498846.000000	297631758.00000
2003	3592737.000000	49380700.000000	135461144.000000	203766029.000000	249377437.000000	279661188.000000	292897321.000000	298935320.00000
2004	1617625.000000	52367903.000000	127123345.000000	197583449.000000	243772955.000000	270937790.000000	284027624.000000	288476178.00000
2005	1617463.000000	54874170.000000	127918577.000000	199922166.000000	247481150.000000	271736199.000000	284764683.000000	290172197.000000
2006	4056397.000000	46620968.000000	128762059.000000	199871502.000000	246708416.000000	274025670.000000	288207447.000000	292632220.000000
2007	2094358.000000	46397031.000000	132602794.000000	199503974.000000	250744434.000000	276357306.000000	288067869.000000	293180137.000000
2008	3204310.000000	39314302.000000	127133116.000000	195618362.000000	242022989.000000	271386829.000000	285957669.000000	290641213.00000
2009	2281020.000000	48134704.000000	129443792.000000	207226593.000000	253528126.000000	275339116.000000	289163444.000000	294661052.00000
2010	3247383.000000	45355418.000000	130948545.000000	197259488.000000	245848248.000000	277067336.000000	288809927.000000	294575540.00000
2011	4023190.000000	52422934.000000	135085441.000000	213929806.000000	262775639.000000	289531575.000000	302093905.000000	304345060.600000
2012	4058287.000000	50069534.000000	142260025.000000	206867581.000000	257968282.000000	283492730.000000	298678830.800000	301681839.40000
2013	3335156.000000	52570292.000000	133763178.000000	206994774.000000	254275027.000000	278221412.100000	293279630.000000	295392654.30000
2014	1727421.000000	48142658.000000	129925423.000000	202030672.000000	247221887.000000	271516891.300000	287485484.600000	291799355.00000
2015	2707623.000000	44076323.000000	130639869.000000	202122480.400000	246644996.900000	269395892.600000	286703049.900000	291640882.900000
2016	3057485.000000	41569188.000000	130478630.000000	199761028.300000	244225817.400000	266442116.300000	284760652.100000	290886684.20000
2017	2458100.000000	47018050.100000	130123667.500000	201967398.100000	245349943.800000	268009981.800000	286374167.400000	292205569.00000

Individual claim reserving study example using Bayesian LTSM prediction



[16] F. Planchet, C. Y Robert, (2019) Insurance Data Analytics, NLP methodological triggers to address Insurance domain issues, Economica
 [17] A. Siddahant, Z. C. Lipton (2018), Deep Bayesian Active Learning for Natural Language Processing: Results of a Large-Scale Empirical Study, <u>arXiv:1808.05697</u>

Thank you for your attention

EAA e-Conference on Data Science & Data Ethics

12 May 2022

Contact

Aurélien COULOUMY – CCR Group Head of Digital Transformation acouloumy@ccr.fr

5. APPENDIX

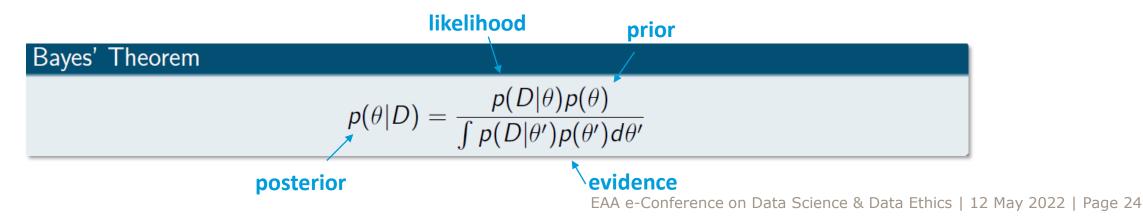
ABOUT – BAYESIAN APPROACH

 Classical ML approach: **point estimation** of parameters minimizing a loss function (e.g. likelihood with a regularisation term) - can be seen as MAP in some cases :

Maximum A Posteriori

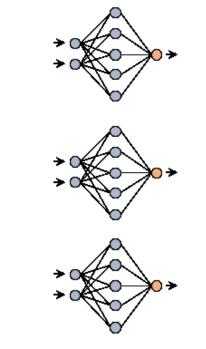
$$\min_{\theta} - \sum_{1}^{N} \log(p(y_n | x_n, \theta) - \log(p(\theta)))$$
(MAP)

• Bayesian approach: learning the **a posteriori distribution** on the model parameters from Bayes' rule :



ABOUT – DEEP ENSEMBLES

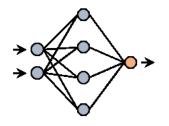
- **Deep Ensembles** method **are Not exactly** Bayesian.
- Intuitively close, since by ensembling one takes into account the predictions of several possible models, in a similar way to the Bayesian approach where one takes into account the predictions of all credible models.
- Particular ensembling method is an approximation to the Bayesian approach.
- This ensembling method consists in randomly drawing the regularization parameter for each trained model.



Deep Ensemble (Bootstrap example)

ABOUT – BAYES BY BACKPROP

- Bayes by Backprop method belongs to the class of variational inference.
- Approximates the posterior distribution of parameters with a parametric family of distributions.
- E.g. use independent Gaussian distributions
- Learn the parameters of this distribution, which is done with a gradient descent on a well-chosen loss function.

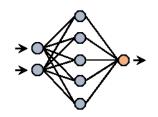


Bayes by Backprop

APPENDIX

ABOUT - STOCHASTIC GRADIENT LANGEVIN DYNAMICS (SGLD)

- Stochastic Gradient Langevin Dynamics (SGLD)
- Exploits Stochastic Gradient Descent with a slight modification to approximate Bayesian inference.
- Add some **gaussian noise** in the update of parameters at each iteration of the descent.
- Parameters obtained by this gradient descent approximate in the limit the posterior distribution under some conditions on the evolution of the learning rate.
- Obtain several credible models by recovering models at several stages of the training, i.e. at different iterations of the modified gradient descent.



Stochastic Gradient Langevin Dynamics

ABOUT – REGRESSION CASE UNCERTAINTY

• Total predictive uncertainty can be measured by the **total variance** of the predictive distribution

Epistemic uncertainty is the variance of means predictions **along Bayesian posterior distribution**

Aleatoric uncertainty is the **mean of variances obtained at output** (of each sampled model)

with
$$\{\hat{y}_t, \hat{\sigma}_t^2\}_{t=1}^T$$
 a set of T sampled outputs: $\hat{y}_t, \hat{\sigma}_t^2 = f^{\widehat{W}_t}(x)$
i.e. with $\{\widehat{W}_t\}_{t=1}^T$ weights sampled from posterior

 $Var(\hat{y}) \approx \frac{1}{T} \sum_{t=1}^{T} \hat{y}_t^2 - \left(\frac{1}{T} \sum_{t=1}^{T} \hat{y}_t\right)^2 + \frac{1}{T} \sum_{t=1}^{T} \hat{\sigma}_t^2$

 By the law of total variance, predictive uncertainty is the sum of aleatoric and epistemic uncertainty

ABOUT – CLASSIFICATION CASE UNCERTAINTY

• Total predictive uncertainty can be measured by the predictive entropy, i.e. entropy of mean prediction

$$H[\overline{P}(y|x)] = -\sum_{y \in Y} \overline{P}(y|x) \log \overline{P}(y|x) \text{ with } \overline{P}(y|x) = E_{p(W|D)}[P(y|x,W)]$$

• Then aleatoric uncertainty is the mean of entropies (**expected entropy**)

$$E_{p(W|D)}H[P(y|x,W)]$$

• Then epistemic uncertainty is predictive minus aleatoric uncertainty, that is **mutual information**

$$I(W, y|D, x) = H[\bar{P}(y|x)] - E_{p(W|D)}H[P(y|x, W)]$$

REFERENCES

- [1] Y Gal, (2016) Uncertainty in Deep Learning, http://www.cs.ox.ac.uk/people/yarin.gal/website//thesis/thesis.pdf,
- [2] Chandra R, He Y, (2021) Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic, <u>https://doi.org/10.1371/journal.pone.0253217</u>
 [3] Internal CCR Group analysis, (2022) SWI indicators prediction
- [4] D Feng, L Zhao, (2021) BDNNSurv: Bayesian deep neural networks for survival analysis using pseudo values, https://jds-online.org/journal/JDS/article/1244/info
- [5] N. G. Polson, V. Sokolov et al., (2017) Deep learning: a Bayesian perspective, Bayesian Analysis, vol. 12, no. 4, pp. 1275–1304
- [6] J. Lampinen and A. Vehtari, (2001) Bayesian approach for neural networks—review and case studies, Neural Networks, vol. 14, no. 3, pp. 257 274,
- [7] D. M. Titterington, (2004) Bayesian methods for neural networks and related models," Statist. Sci., vol. 19, no. 1, pp. 128–139, 02
- [8] G. Yarin and G. Zoubin. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. <u>https://arxiv.org/abs/1506.02142</u>
- [9] A Der Kiureghian and O Ditlevsen. (2009) Aleatory or epistemic? does it matter? Structural Safety, 31 (2):105–112,
- [10] CCR Re Publication Third party liability compensation of severe motor bodily injury claims, (2019)
- https://www.ccr-re.com/documents/20123/54390/Third+party+WhitePaper+-+CCR+Re+-+WEB.pdf
- [11] B Settles, (2010), Active learning literature survey, <u>http://burrsettles.com/pub/settles.activelearning.pdf</u>
- [12] A Nguyen, J. Yosinski, J. Clune, (2014), Deep Neural Networks are Easily Fooled <u>https://arxiv.org/abs/1412.1897</u>
- [13] J Ramkissoon (2020) Dealing with Overconfidence in Neural Networks: Bayesian Approach, https://jramkiss.github.io/2020/07/29/overconfident-nn/
- [14] D. Huynh (2019) Bayesian deep learning with Fastai,
- [15] A Kendall, Y Gal, (2017) What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? <u>https://arxiv.org/pdf/1703.04977.pdf</u>
- [16] F. Planchet, C. Y Robert, (2019) Insurance Data Analytics, NLP methodological triggers to address Insurance domain issues, Economica
- [17] A. Siddahant, Z. C. Lipton (2018), Deep Bayesian Active Learning for Natural Language Processing: Results of a Large-Scale Empirical Study, arXiv:1808.05697