Neural networks for insurance pricing with frequency and severity data:

a benchmark study from data preprocessing to technical tariff

Freek Holvoet LRisk - KU Leuven

7 November 2023

Presenter + Authors

Holvoet, F., Antonio, K., & Henckaerts, R. (2023). Neural networks for insurance pricing with frequency and severity data: a benchmark study from data preprocessing to technical tariff. *arXiv preprint arXiv:2310.12671*.

Pricing in non-life insurance

Pricing in non-life insurance: frequency-severity modelling with GLMs

Henckaerts, R., Antonio, K., Clijsters, M. & Verbelen, R. (2018). A data driven binning strategy for the construction of insurance tariff classes. Scandinavian Actuarial Journal, 8, 681-705.

Pricing in non-life insurance: machine learning techniques

Henckaerts, R., Cote, M-P., Antonio, K. & Verbelen, R. (2021) *Boosting insights in insurance tariff plans with tree-based machine learning methods.* North American Actuarial Journal, 25, 255-285.

Pricing in non-life insurance: machine learning techniques and GLM as global surrogate model

Henckaerts, R., Antonio, K. & Cote, M-P. (2022). *When stakes are high: balancing accuracy and transparency with model-agnostic interpretable data-driven surrogates.* Expert Systems with Applications, 202, 117230.

Contribution	Categorical treatment	Model architecture	# Data sets	Case study	Interpretational tools
Dugas et al. (2003)	_	LR, GLM, DT, NN, SVM	1	Tech. tariff	-
Yang et al. (2018)	_	TDBoost	1	Tweedie compound	PDP, VIP
Henckaerts et al. (2018)	DT binning	GLM	1	Freq, sev	-
Wüthrich (2019)	Dummy encoding, Embedding layers	GLM, NN, CANN	1	Freq	avg. neuron activation
Schelldorfer and Wüthrich (2019)	Embedding layers	CANN	1	Freq	_
Ferrario et al. (2020)	One-hot encoding	Boosted trees, NN	1	Freq	_
Henckaerts et al. (2021)	_	DT, RF, GBM	1	Freq, sev, tech. tariff	PDP, VIP, ICE
Delong and Kozak (2021)	Autoencoders	NN	1	Freq	-
Meng et al. (2022)	Convolutional autoencoder	GLM	1	Freq	_
Henckaerts et al. (2022)	_	GBM	6	Freq	PDP, SHAP, Surrogates

Research contributions

- + benchmarking study with multiple data sets
- + comparison of different embedding techniques
- + interpreting the results with a variety of interpretation tools

Deep learning architecture

Feed-forward neural network

Feed-forward neural network characteristics:

- x: numerical input
- $z^{(1)}, \ldots, z^{(M)}$: hidden layers
- ▶ q₁,..., q_M: number of neurons for each hidden layer
- exponential activation in the output layer \hat{y}
- Poisson deviance for frequency modelling, gamma deviance for severity modelling

Combined actuarial neural network (CANN)

CANN characteristics:

- ŷ^{IN}: initial model input, i.e., a GLM or GBM
- \hat{y}^{NN} : neural network adjustment on the \hat{y}^{IN}
- fixed CANN:

$$\hat{y} = \exp\left(\hat{y}^{\mathsf{NN}} + \ln\left(\hat{y}^{\mathsf{IN}}
ight)
ight)$$

flexible CANN:

 $\hat{y} = \exp\left(w_{\mathsf{N}\mathsf{N}}\cdot\hat{y}^{\mathsf{N}\mathsf{N}} + w_{\mathsf{I}\mathsf{N}}\cdot\mathsf{ln}\left(\hat{y}^{\mathsf{I}\mathsf{N}}\right) + b\right)$

Pre-processing steps

Continuous or spatial input variables

Continuous input variables:

- we use normalization around zero
- for each continuous variable x_j we replace the value x_{i,j} with

$$x_{i,j} \mapsto \tilde{x}_{i,j} = \frac{x_{i,j} - \mu_{x_j}}{\sigma_{x_j}}$$

where $\mu_{\mathbf{x}_{j}}$ and $\sigma_{\mathbf{x}_{j}}$ are calculated on the training data

Spatial input variables

- AUS, FR, NOR, low number of levels: categorical
- BE, very high number of levels: continuous latitude & longitude

Categorical input variables

Autoencoder embedding

- create one-hot encoding for each categorical variable
- construct autoencoder with all one-hot encodings as input
- encoded layer z^{enc} of lower dimension than the input layer
- apply softmax transformation on the output layer
- train the autoencoder using cross-entropy loss function

Categorical input variables

After the autoencoder is trained, we can calculate the embedding of all categorical variables as

$$m{z}_i^{ ext{enc}} = \sigma^{(ext{enc})} \left(m{\mathcal{W}}_{ ext{enc}} \cdot m{x}_i + m{b}_{ ext{enc}}
ight).$$

The vector z_i^{enc} is a compact, accurate and numerical representation of x_i .

Therefore we need to normalise the values in z^{enc} to be used in our FFNN and CANN models.

$$W_{\text{enc}} \mapsto \tilde{W}_{\text{enc}} = \begin{pmatrix} \frac{w_{11}}{\sigma_1} & \frac{w_{12}}{\sigma_1} & \dots & \frac{w_{1c}}{\sigma_1} \\ \frac{w_{21}}{\sigma_2} & \frac{w_{12}}{\sigma_2} & \dots & \frac{w_{1c}}{\sigma_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{w_{d-1,1}}{\sigma_{d-1}} & \frac{w_{d-1,2}}{\sigma_{d-1}} & \dots & \frac{w_{d-1,c}}{\sigma_{d-1}} \\ \frac{w_{d1}}{\sigma_d} & \frac{w_{d2}}{\sigma_d} & \dots & \frac{w_{dc}}{\sigma_d} \end{pmatrix}, \boldsymbol{b}_{\text{enc}} \mapsto \tilde{\boldsymbol{b}}_{\text{enc}} = \begin{pmatrix} \frac{\underline{b_1 - \mu_1}}{\sigma_1} \\ \frac{\underline{b_2 - \mu_2}}{\sigma_2} \\ \vdots \\ \frac{\underline{b_{d-1} - \mu_{d-1}}}{\sigma_{d-1}} \\ \frac{\underline{b_d - \mu_d}}{\sigma_d} \end{pmatrix}$$

Categorical input variables

Advantages of autoencoder embedding:

- allows for cross-effects between variables in the embedding
- tunable autoencoded dimension
- unsupervised learning, so the autoencoder can be trained on the entire training set, and learned encoding can be used for both frequency and severity modelling.

Combining neural networks with autoencoder embedding

Out-of-sample performance

Random grid search strategy

We use random grid search as tuning strategy (Bergstra and Bengio, 2012):

- ▶ for each tuning parameter t_k we define a range [t_{k,min}, t_{k,max}]
- \blacktriangleright the search space ${\cal S}$ is defined as

$$\mathcal{S} = [t_{1,\min}, t_{1,\max}] imes \ldots imes [t_{\mathcal{K},\min}, t_{\mathcal{K},\max}]$$

we draw a random grid *R* ⊂ *S* of candidate tuning parameters.

Cross-validation scheme

Henckaerts et al. (2020)

	Austalian data	Belgian data	French data	Norwegian data
GLM*	0.3816	0.5314	0.2762	0.2779
GBM*	0.3804	0.5295	0.2714	0.2778
Neural Network	0.3816	0.5319	0.2706	0.2799
CANN GLM fixed	0.3820	0.5307	0.2765	0.2778
CANN GLM flexible	0.3793	0.5283	0.2743	0.2779
CANN GBM fixed	0.3805	0.5295	0.2711	0.2777
CANN GBM flexible	0.3782	0.5279	0.2695	0.2778

- Measured in Poisson deviance, lowest deviance in bold
- *GLM as constructed in Henckaerts et al. (2018) *GBM as constructed in Henckaerts et al. (2020)

 All results averaged over three runs to avoid local minima solutions

	Austalian data	Belgian data	French data	Norwegian data
GLM*	1.5562	2.2280	1.7093	1.1355
GBM*	1.5359	2.2365	1.6471	1.1370
Neural Network	1.5752	2.2436	1.6104	1.1353
CANN GLM fixed	1.5414	2.2284	1.7132	1.1373
CANN GLM flexible	1.5508	2.2284	1.7124	1.1358
CANN GBM fixed	1.5357	2.2364	1.6472	1.1374
CANN GBM flexible	1.5395	2.2365	1.7153	1.1378

- Measured in gamma deviance, lowest deviance in bold
- *GLM as constructed in Henckaerts et al. (2018) *GBM as constructed in Henckaerts et al. (2020)

 All results averaged over three runs to avoid local minima solutions

Effect of autoencoder embedding

Interpretation tools

Variable importance

Severity modelling

Results for the Belgian MTPL data set.

Variable importance

Severity modelling

Results for the French MTPL data set.

21

Results for the Belgian MTPL data set.

Results for the French MTPL data set.

Results for the Belgian MTPL data set.

Premium structure

Henckaerts, R., Antonio, K., & Cote, M-P. (2022). *When stakes are high: balancing accuracy and transparency with model-agnostic interpretable data-driven surrogates.* Expert Systems with Applications, 202, 117230.

Segmentation

Covariates

Bonus-mal score	us		Bonus	-malu ore	s	
50			0.0	445		
51	Vehicle power	, ,	0.0	431	Vehicle power	
52	4	_	0.0	547	0.0515	-
53	5	Region	0.0	550	0.0589 —	
54	6 —	Rhone-Alpes	0.0	489	0.0623	Region
55	7	Picardie	0.0	729	0.0576	0.0595
:	8	Aquitaine		:	0.0492	0.0610
168	9	:	0.1	910	0.0684	0.0507
169	10	Eranche-	0.1	912	0.0634	:
170	11	Comte	0.1	918	0.0620	0.0491
171	12	Limousin	0.1	919	0.0587	0.0566
172	13	Haute-	0.1	926	0.0605	0.0524
173	14	Normandie	0.1	941	0.0600	
	15				0.0581	

Partial dependency effects

Bonus-malı score	IS	
[50, 54]		
[55, 57]		
[58, 61] _		
62	Vehicle pow	ver
63	4	
64	5	Region
÷	6	$\{$ Zone 1 $\}$
[73, 75]	7	$\{$ Zone 2 $\}$
76	8	{Zone 3}
[77, 78]	9	{Zone 4}
[79, 95]	[10, 11]	$\{$ Zone 5 $\}$
[96, 100]	[12, 15]	
[101, 173]		

Results for French MTPL data set; CANN GBM flexible model.

Results for French MTPL data set; CANN GBM flexible model.

Surrogate GLM fitted on the segmented data

Vehicle power	Bonus- malus score	Policyholder age	 Region	Frequency surrogate
1	64	[30, 40)	 {Champagne-Ardenne, Corse}	0.0099
3	76	[21, 26)	 {Bourgogne, Limousin, Pays-de-la-Loire}	0.0857
4	[79, 95]	[40, 70)	 {Bretagne, Centre, Ile-de-France, Picardie, Rhone-Alpes}	0.1709

Out-of-sample performance comparison

	Austalian data	Belgian data	French data
Binned GLM*	0.3817	0.5314	0.2761
Surrogate GLM	0.3805	0.5308	0.2738

*GLM as constructed in Henckaerts et al. (2018)

Risk profile comparison

Variables	Low risk	Medium risk	High risk
Vehicle power	4	6	9
Vehicle age	3	2	1
Policyholder age	[21, 26[[30, 40[\geq 70
Bonus-malus scale	50	70	190
Vehicle brand	B12	B5	B11
Fuel type	Regular	Regular	Diesel
Population density of area	2.71	665.14	22 026.47
District of residence	Midi-Pyrenees	Basse-Normandie	Corse
Predicted number of clai	ms		
Surrogate GLM	0.020	0.106	0.361
CANN GBM flexible	0.021	0.101	0.519

Results for French MTPL data set.

Risk profile comparison

Managerial insights

Managerial insights

Portfolio comparison on predicted losses versus observed losses

	Observed	GLM	GBM	CANN GBM flex	Surrogate GLM
Observed and predicte	d losses				
Australia (AU\$)	9 314 604	9 345 113	9 136 324	9 154 467	9 355 718
Belgium (€)	26 464 970	26 399 027	26 079 709	25 720 143	26 345 969
France (€)	58 872 147	56 053 341	56 207 993	58 629 584	57 048 375
Norway (NOK)	206 649 080	206 634 401	206 475 980	206 494 683	-

Ratio of predicted losses over observed losses

Australia	-	1.00	0.98	0.98	1.00
Belgium	-	1.00	0.99	0.97	1.00
France	-	0.95	0.95	1.00	0.97
Norway	-	1.00	1.00	1.00	-

Managerial insights

Risk classification comparison using Lorenz curve

- Our deep learning structures have a higher performance on multiple data sets, in both frequency and severity modelling
- ▶ With interpretation tools we can get insights into the deep learning models
- ▶ We can construct interpretable and easy to use surrogate GLMs, based on the insights of the deep learning models, including the predictive power of the deep learning models

References

Bergstra, J. & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281-305.

Delong, Ł. & Kozak, A. (2023). The use of autoencoders for training neural networks with mixed categorical and numerical features. ASTIN Bulletin: The Journal of the IAA, 1–20.

Dugas, C., Bengio, Y., Chapados, N., Vincent, P., Denoncourt, G. & Fournier, C. (2003). *Statistical learning algorithms applied to automobile insurance ratemaking*. Intelligent and Other Computational Techniques in Insurance, 137-197.

Garavaglia, S. & Sharma, A. (1998). A smart guide to dummy variables: four applications and a macro. Proceedings of the northeast SAS users group conference, 43.

Guo, C. & Berkhahn, F. (2016). Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737.

Henckaerts, R., Antonio, K., Clijsters, M. & Verbelen, R. (2018). A data driven binning strategy for the construction of insurance tariff classes. Scandinavian Actuarial Journal, 8, 681-705.

References

Henckaerts, R., Cote, M-P., Antonio, K. & Verbelen, R. (2021). Boosting insights in insurance tariff plans with tree-based machine learning methods. North American Actuarial Journal, 25, 255-285.

Henckaerts, R., Antonio, K. & Cote, M-P. (2022). When stakes are high: Balancing accuracy and transparency with model-agnostic interpretable data-driven surrogates. Expert Systems with Applications, 202, 117230.

Meng, S., Wang, H., Shi, Y. & Gao, G. (2022). *Improving automobile insurance claims frequency prediction with telematics car driving data*. ASTIN Bulletin: The Journal of the IAA, 52, 2, 363–391.

Schelldorfer, J. & and Wuthrich, M. (2019). *Nesting classical actuarial models into neural networks*. URL www.ssrn.com/abstract=3320525.

Wuthrich, M. (2019). From generalized linear models to neural networks, and back. URL www.ssrn.com/abstract=3491790.

Yang, Y., Qian, W. & Zou, H. (2018). Insurance premium prediction via gradient tree-boosted Tweedie compound Poisson models. Journal of Business & Economic Statistics, 36, 3, 456-470.

Thank you for your attention!

Paper on Arxiv

Code via Github