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Agenda of the talk

• Preliminaries drawn from IFoA and actuarial associations 

• Some initial climate change impact modelling projects

• Managing risks in presence of climate change: worsening risks

• Managing risks in presence of climate change: uninsurability

• One potential useful risk control: prevention (before and after the claim)
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Climate change risk taxonomy (reminder)



Climate change impacts on insurance (IFoA)



Modelling impact on health and mortality
insurance
• Extreme heat waves

• Vectorial diseases

• Pollution

• Co-benefits

• ACPR, Drif and Valade (2020) ->



Current works in progress

• Develop an add-on of the StMoMo Package that includes refinements
of Lee-Carter type mortality models taking into account temperature
evolutions

• Refine stress tests proposed by ACPR and by AON Benfield (Drif and 
Valade 2020)

• Quickest detection of mortality level and trend changes with
additional information



Modelling impact on P&C insurance

• Increase in claim frequency (sea-level rise, subsidence risk)

• Combining insurer data and external open data (with quality issues)

• Risk of de-mutualisation / exclusion

• Increase in claim severity (hurricane, …)

• Uncertainty on claim severity and frequency

• Prevention before the event

• Prevention after the event



Subsidence risk: thesis of P. Chatelain (2023)



Hail risk and climate change (work in progress with Rayane 
Vigneron)



Risks for the insurer: banckrupcy, insolvency, 
or mass lapse
• Ruin may occur

• Ruin probability may become too high (insolvency)

• Risk may become uninsurable (premium too high or « infinite mean »)

• Premium may be adjusted instantaneously or not: no adjustement
(uncertainty), perfect adjustment or credibility adjustments

• Previous works with Albrecher and Constantinescu, Kortschak and Ribereau

• Work in progress with Albrecher and Guerra, and with Mamode Khan and Minier



Classical ruin model

R(t) = u + ct −
N(t)∑
k=1

Xk ,

• u ≥ 0: initial surplus

• (N(t))t≥0 claim counting process (Poisson or renewal
process)

• Xk iid random variables: claim amounts, E{X} <∞
• c > 0: constant premium intensity

• ct > E{N(t)}E{X}: net profit condition



Ruin

Time of ruin

Tu = inf
t≥0

(R(t) < 0 | R(0) = u)

Probability of ruin

ψ(u) = P (Tu <∞)

Classical result (Cramer, 1930) for compound Poisson model
with X ∼ Exp(θ) claim amounts

ψ(u) = min
{ λ
θc

e−(θ−λ
c

)u, 1
}
, u ≥ 0.



Mixing idea

Denote by
ψθ(u) = P (Tu <∞ | Θ = θ)

Then, the ruin probability is given by

ψ(u) =

∫ ∞
0

ψθ(u)dFΘ(θ).



Claims: dependent Pareto

• Compound Poisson risk model ( τ ∼ Exp(λ))

• Claims X ∼ Exp(Θ), where Θ ∼ Γ(α, β)

Ruin probability is

Ψ(u) =

∫ λ/c

0

1 · β
α

Γ(α)
θα−1e−βθdθ

+

∫ ∞
λ/c

λ

θc
e−θue

λ
c
u︸ ︷︷ ︸

Ψθ(u)

· β
α

Γ(α)
θα−1e−βθ︸ ︷︷ ︸

fΘ(θ),Θ∼Γ(α,β)

dθ



Claims: dependent Pareto

Ψ(u) = 1− Γ(α, βθ0)

Γ(α)

+
β

Γ(α)
(βθ0)α−1e−βθ0 (u + β)−1︸ ︷︷ ︸

→u→∞0

Γ(α− 1, (β + u)θ0)

((β + u)θ0)α−2e−(β+u)θ0︸ ︷︷ ︸
→u→∞1

One can see that the probability of ruin decays to a constant

lim
u→∞

Ψ(u) = 1−
Γ(α, βλ

c
)

Γ(α)
> 0

as fast as u−1!! Compared to the independent case...



Mixing dependence structure

For X ∼ Exp(Θ), with Θ ∼ FΘ, consider the classical
compound Poisson risk model with exponential claim sizes
that fulfill, for each n,

P (X1 > x1, . . . ,Xn > xn | Θ = θ) =
n∏

k=1

e−θxk . (1)

That is, given Θ = θ, the Xk (k ≥ 1) are conditionally
independent and distributed as Exp(θ).



Net profit condition

Link with deceptive claim size distributions (see [24]).

Since for θ ≤ θ0 = λ/c the net profit condition is violated and
consequently ψθ(u) = 1 for all u ≥ 0, this can be rewritten as

ψ(u) =

∫ ∞
0

ψθ(u)dFΘ(θ) = FΘ(θ0) +

∫ ∞
θ0

ψθ(u)dFΘ(θ).

An immediate consequence is that in this dependence model

lim
u→∞

ψ(u) = FΘ(θ0),

which is positive whenever the random variable Θ has
probability mass at or below θ0 = λ/c (probability of net profit
condition not being fulfilled).



Interarrival times: dependent Pareto

If one considers the classical Cramér Lundberg risk model with
exponential claims, where the parameter Λ of the exponential
inter-arrival time is a r v.

Λ ∼ Γ(α, β)

one obtains Pareto inter-arrival times and the probability of
ruin can be calculated explicitly as well. Similarly as before, for
λ0 = θc , one can write

Ψ(u) =

∫ λ0

0

λ

θc
e−θue

λ
c
u︸ ︷︷ ︸

Ψλ(u)

βα

Γ(α)
λα−1e−βλ︸ ︷︷ ︸

fΛ(λ),Λ∼Γ(α,β)

dλ

+

∫ ∞
λ0

1 · β
α

Γ(α)
λα−1e−βλdλ



Interarrival times: dependent Pareto

Ψ(u) = e−uθβα(β − u

c
)−α−1 Γ(α + 1)− Γ(α + 1, cβθ − uθ)

cθΓ(α)

+
Γ(α, βcθ)

Γ(α)

Thus, the probability of ruin decays again as fast as u−1 to

lim
u→∞

Ψ(u) =
Γ(α, βcθ)

Γ(α)

the probability of net profit condition not being fulfilled.
At u = 0

Ψ(0) =
Γ(α + 1)− Γ(α + 1, cβθ)

βcθΓ(α)
+

Γ(α, βcθ)

Γ(α)



Proposition

The dependence model characterized by

P (X1 > x1, . . . ,Xn > xn | Θ = θ) =
n∏

k=1

e−θxk

can equivalently be described by having marginal claim sizes
X1,X2, . . . that are completely monotone, with a dependence
structure due to an Archimedean survival copula with

generator ϕ =
(
F̃Θ

)−1

for each subset (Xj1 , . . . ,Xjn) (for

j1, . . . , jn pairwise different), where F̃Θ denotes the
Laplace-Stieltjes transform of FΘ.



Dubey 1977

For N(t) ∼ Poisson(Λ)

R(t) = c

∫ t

0

λ̂(s)ds −
N(t)∑
j=0

Yj , t ≥ 0

Estimates for λ

• λ̂(t) = E{Λ | N(t)} → exact form for the ruin probability

• λ̂(t) = N(t)
t
→ moments of ruin

• λ̂(t) = a+N(t)
b+t

→ approximation of the probability of ruin,

considering λ̂ to be the “credibility”estimate.

Note: This model was theoretical basis for the Bonus-Malus system

for the Swiss obligatory car insurance.



Asymptotic ruin probability with worsening 
risks, or with infinite mean risks 

 

• Joint work with Dominik Kortschak & Pierre 
Ribereau (Lyon) 

 

• Worsening risks means that the tail becomes 
heavier and heavier, due to phenomena like 
climate change or sectorial inflation. 



Two models with worsening risks 



 

Two models with worsening risks 



 

Two models with worsening risks 
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Ehrlich & Becker (1972) → 2 types of economic prevention :

- Self-protection : Decrease claim probability
- Complements insurance

- Observable

- Self-insurance : Decrease claim amounts
- May substitute insurance

- Non observable

- Comments on model
- Is prevention observable?

- 2-period models and deterministic claim amounts

- Rational individual (expected utility)

- Prevention demand model
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Introduction



• Optimal prevention with one type of claims

• Optimal prevention with two types of claims

• How to target the right policholders in terms of prevention?

Outline of the talk



𝑹𝒕 = 𝒖 + 𝒄 t - σ𝒊=𝟏
𝑵𝒕 𝑿𝒊

You all know this notation, I’m too lazy to write it down.

Non ruin probability: 𝝋 𝒖 = ℙ(∀𝒕 > 𝟎 , 𝑹𝒕 > 𝟎)
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Classical notation



We assume that the prevention effort is constant over time.

- 𝒑 ∈ [𝟎, 𝒄[ : prevention investment per unit of time

- 𝒉 : nonincreasing function

Model :

→ Reinsurance models

Waters, H. R. (1983). Some mathematical aspects of reinsurance. Insurance: Mathematics and 
Economics, 2(1), 17-26.
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Modeling self insurance

𝑹𝒕
𝑺𝑰(𝒑) = 𝒖 + (𝒄 − 𝒑) t - σ𝒊=𝟏

𝑵𝒕 𝒉(𝑿𝒊, 𝒑)



We assume that the prevention effort is constant over time.

Soit
- 𝒑 ∈ [𝟎, 𝒄[ : prevention investment per unit of time

- 𝝀(. ) : positive, decreasing and convex

- 𝑵𝒕(𝒑) : Poisson process with intensity 𝝀(𝒑)

Model:

𝝋 𝒖, 𝒑 = ℙ(∀𝒕 > 𝟎 , 𝑹𝒕(𝒑) > 𝟎)
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Modeling self-protection

𝑹𝒕 (𝒑) = 𝒖 + (𝒄 − 𝒑) t - σ𝒊=𝟏
𝑵𝒕(𝒑)𝑿𝒊
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Maximise surplus at a given time

Find 𝒑∗∗ = 𝒂𝒓𝒈𝒎𝒂𝒙 (𝔼 𝑹𝒕 𝒑 )

Problem 1 : 

Problem 1 admits a solution iff

− 𝝀′ 𝟎 ≥
𝟏

𝝁
.

Then, 𝑝∗∗ satisfies

− 𝝀′ 𝒑∗∗ =
𝟏

𝝁
.

Proposition 1 :

If 𝟏 ≤
𝜆(𝒑)𝜇

𝒄 −𝒑
, then ∀ 𝑢 ≥ 0,𝝋 𝒖, 𝒑 = 0



𝒑∗ does not depend on 𝒖!
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Maximise non ruin probability

Find 𝒑∗ = 𝒂𝒓𝒈𝒎𝒂𝒙 𝝋 𝒖, 𝒑 .

Problem 2 : 

For 𝑢 ≥ 0, Problem 2 admits a solution iff

− 𝝀′ 𝟎 −
𝝀 𝟎

𝒄
> 𝟎.

Then 𝑝∗ satisfies

𝒑∗ = 𝒄 +
𝝀(𝒑∗)

𝝀′(𝒑∗)
.

Proposition 2 :
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Adjustment coefficient κ(𝑝) such that

1 +
𝑐 −𝑝

𝜆 𝑝
κ(𝑝) = 𝑀𝑋 κ(𝑝) .

1 - 𝝋 𝒖, 𝒑 ≤ 𝒆−κ 𝑝 𝒖.   

Borne de Cramer Lundberg :

Maximise adjustment coeff.

𝑀𝑋(𝑠): f.g.m. of X  

Assume that ∀𝑠 > 0, 𝑀𝑋 𝑠 < ∞,

or 

∃𝑠∗ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀𝑠 ∈]0, 𝑠∗[, 𝑀𝑋 𝑠 < ∞, and ∀𝑠 ≥ 𝑠∗, 𝑀𝑋 𝑠 = ∞.

Definition : 

𝑝∗ maximises κ 𝑡𝑜𝑜

Proposition 3 :



𝐾: dividend barrier

𝐿𝑡(p): cumulated dividends paid up to t

ξ 𝑢, 𝐾, 𝑝 : Probability of ruin before reaching
𝐾

Segerdhal (1970) : 

𝔼 𝑳𝒕 (𝒑) =
(𝟏 − ξ 𝑢, 𝐾, 𝑝 )(𝒄 − 𝒑)

𝜆(𝒑) 𝟎
𝑲
ξ 𝐾 − 𝑥, 𝐾, 𝑝 𝒅𝑭𝑿(𝒙)
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Maximise dividends up to ruin

x

𝑝∗ maximizes 𝔼 𝑳𝒕 too   

Proposition 4 :

SCR Cov. Ratio =250% 
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Extension: prevention threshold



• Optimal prevention with one type of claims

• Optimal prevention with two types of claims

• How to target the right policholders in terms of prevention?

Outline of the talk



Two types of claims:

- light, frequent claims 𝑿𝒊
𝟏 , average 𝝁𝟏 < ∞

- Poisson process Nt
1 with intensity 𝛌𝟏

- less frequent, more severe claims (𝑿𝒊
𝟐 ) , average 𝝁𝟏 < 𝝁𝟐 < ∞

- Poisson process Nt
2(p) with intensity 𝛌𝟐(𝒑)

𝑹𝒕(𝒑) = 𝒖 + 𝒄 − 𝒑 t - σ
𝒊=𝟏
𝑵𝒕
𝟏

𝑿𝒊
𝟏- σ

𝒋=𝟏
𝑵𝒕
𝟐(𝒑)

𝑿𝒋
𝟐

Equivalent to 
𝑁𝑡(𝑝) with intensity 𝛌𝟏 + 𝛌𝟐(𝒑)

Claim amounts 𝑋𝑝 equal to

- 𝑿𝟏 with probability
𝛌𝟏

𝛌𝟏+𝛌𝟐(𝒑)

- 𝑿𝟐 with probability
𝛌𝟐(𝒑)

𝛌𝟏+𝛌𝟐(𝒑)

𝑅𝑡 𝑝 = 𝒖 + 𝒄 − 𝒑 t − 

𝒊=𝟏

𝑁𝑡(𝑝)

𝑋𝑖
𝑝

→ Self-insurance and self-prevention
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Two-risk model



𝒑∗(𝒖) depends on 𝒖
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Maximize non ruin probability

Find 𝒑∗(𝒖) = 𝒂𝒓𝒈𝒎𝒂𝒙 (𝝋 𝒖, 𝒑 )

Problem 3 
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For 𝑢 = 0, Problem 3 admits a solution iff

− λ𝟐
′ 𝟎 −

λ𝟏𝝁𝟏 + λ𝟐(𝟎)𝝁𝟐

𝝁𝟐 𝒄
> 𝟎 (*)

Then, 𝑝∗(0) satisfies

−λ2
′ 𝑝∗ 0 =

λ𝟏𝝁𝟏+ λ𝟐(𝑝
∗ 0 )𝝁𝟐

𝑐 −𝑝∗ 0

Proposition 7 : solution u = 0
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HMRL

𝑋1 ≤𝐻𝑀𝑅𝐿 𝑋
2 if

∀ 𝑡 ≥ 0,
𝑡
∞
1 − 𝐹𝑋1 𝑢 𝑑𝑢

𝔼 𝑋1 ≤
𝑡
∞
1 − 𝐹𝑋2 𝑢 𝑑𝑢

𝔼 𝑋2

Definition: HMRL order

If (*) is satisfied, and if 𝑋1 ≤𝐻𝑀𝑅𝐿 𝑋
2, then ∀𝑢 ≥ 0,  𝑝∗ 𝑢 exist𝑠 𝑎𝑛𝑑 𝑝∗ 𝑢 > 𝑝∗ 0

Proposition 8 : Sufficient condition for existence of 𝑝∗(𝑢)



27

Optimal 𝑝𝜅
∗ satisfies

−𝝀𝟐
′ 𝒑𝜿

∗ 𝒄 − 𝒑𝜿
∗ + 𝝀𝟏𝔼 𝒆

𝜿 𝒑𝜿
∗ 𝝀𝟏𝑿

𝟏+𝝀𝟐 𝒑𝜿
∗ 𝑿𝟐

𝝀𝟏+𝝀𝟐 𝒑𝜿
∗

𝑿𝟏 − 𝑿𝟐 = 𝝀𝟏 + 𝝀𝟐 𝒑𝜿
∗

Besides,

𝐥𝐢𝐦
𝒖→∞

𝒑∗ 𝒖 = 𝒑𝜿
∗

Proposition 9 : Light-tailed asymptotics

For 𝑝∞
∗ such that

−𝝀𝟐
′ 𝒑∞

∗
𝝁𝟐

𝝋 𝟎, 𝒑∞
∗ +

𝝁𝟏𝜆𝟏
𝜆𝟐 𝒑∞

∗ =
𝝁𝟏𝜆𝟏 + 𝝁𝟐𝝀𝟐 𝒑∞

∗

𝝋 𝟎, 𝒑∞
∗ (𝒄 − 𝒑∞

∗ )

we have

𝐥𝐢𝐦
𝒖→∞

𝒑∗ 𝒖 = 𝒑∞
∗

Proposition 10 : When X2 is heavy-tailed



From prevention before claims to prevention at claims

• Climate change adaptation may be more feasible just after a claim

• Future research: investigate the benefits of prevention at claim

• Preventing so-called by-claims to occur,

• or stopping Hawkes-like mechanisms (INAR processes)

• Carbon footprint of claim management (BINAR processes)

• Work in progress with Naushad Mamode Khan and Charles Minier

Papers are available at http://sl.isfa.fr 






