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Agenda of the talk

Preliminaries drawn from IFOA and actuarial associations
Some initial climate change impact modelling projects
Managing risks in presence of climate change: worsening risks
Managing risks in presence of climate change: uninsurability

One potential useful risk control: prevention (before and after the claim)
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Climate change risk taxonomy (reminder)

* The effects of climate change present various risks, not limited to
those directly attributable to weather or temperature.

» “Physical” risks describe those risks emerging from climate factors,
such as extreme high temperature or rising sea levels,

* “Transition” risks are those that emerge from a societal shift towards
a low-carbon economy, and

 “Liability” risks are those that arise from parties who have suffered
loss and damage from climate change, and seek to recover such
losses from others



Climate change impacts on insurance (IFoA)

Risk Class Physical Transition Liability
Market Yes Yes Yes
Longevity Yes Less material No
Mortality/Morbidity Yes Less material No
Lapse Less material Yes No
Counterparty Yes Yes Yes
Operational Less material Yes No
Strategic Yes Yes Yes
Reputational n/a Yes Yes




Modelling impact on health and mortality
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Current works in progress

* Develop an add-on of the StMoMo Package that includes refinements
of Lee-Carter type mortality models taking into account temperature
evolutions

 Refine stress tests proposed by ACPR and by AON Benfield (Drif and
Valade 2020)

* Quickest detection of mortality level and trend changes with
additional information



Modelling impact on P&C insurance

* Increase in claim frequency (sea-level rise, subsidence risk)

* Combining insurer data and external open data (with quality issues)
* Risk of de-mutualisation / exclusion

* Increase in claim severity (hurricane, ...)

* Uncertainty on claim severity and frequency

* Prevention before the event

* Prevention after the event



Historical data
XGB - Bernouilli
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Subsidence risk: thesis of P. Chatelain (2023
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Figure 5: Comparison between the observed CatNat declaration, the GLM logit (using RDI magnitude, SSWI severity and

SPI magnitude) and the XGBoost using all the variables calculated from the three indexes



Hail risk and climate change (work in progress with Rayane
Vigneron)
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Risks for the insurer: banckrupcy, insolvency,
or mass lapse

* Ruin may occur
* Ruin probability may become too high (insolvency)
* Risk may become uninsurable (premium too high or « infinite mean »)

* Premium may be adjusted instantaneously or not: no adjustement
(uncertainty), perfect adjustment or credibility adjustments

* Previous works with Albrecher and Constantinescu, Kortschak and Ribereau

* Work in progress with Albrecher and Guerra, and with Mamode Khan and Minier



Classical ruin model

(t)
R(t)=u+ct—) X,
k=1

u > 0: initial surplus

(N(t))e>0 claim counting process (Poisson or renewal
process)

Xy iid random variables: claim amounts, E{X} < oo
¢ > 0: constant premium intensity
ct > E{N(t)}E{X}: net profit condition



Ruin

Time of ruin

Probability of ruin

Y(u) =P(T, < c0)

Classical result (Cramer, 1930) for compound Poisson model
with X ~ Exp(#) claim amounts

A A
Y(u) = min {%e_(e_?)”, 1}, u>0.



Mixing idea

Denote by
e(u) =P (T, <00 | ©=0)

Then, the ruin probability is given by

(u) = / " o(u)dFo(6).



Claims: dependent Pareto

e Compound Poisson risk model ( 7 ~ Exp(\))
e Claims X ~ Exp(©), where © ~ I'(«, /)

Ruin probability is
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Claims: dependent Pareto
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One can see that the probability of ruin decays to a constant
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as fast as u~*!l Compared to the independent case...



Mixing dependence structure

For X ~ Exp(©), with © ~ Fg, consider the classical
compound Poisson risk model with exponential claim sizes
that fulfill, for each n,

P(Xy>x1,. ... X > x| ©=0)=]]e " (1)
k=1

That is, given © = 6, the X, (k > 1) are conditionally
independent and distributed as Exp(0).



Net profit condition

Link with deceptive claim size distributions (see [24]).

Since for 0 < 6y = A/c the net profit condition is violated and
consequently ¥s(u) = 1 for all u > 0, this can be rewritten as

= /Ooo ¢9(u)dF@(9) = F@(eo) ol y 1/)9( )dF@( )

An immediate consequence is that in this dependence model

Jim ¢(u) = Fe (o),
which is positive whenever the random variable © has
probability mass at or below 6y = \/c (probability of net profit
condition not being fulfilled).



Interarrival times: dependent Pareto

If one considers the classical Cramér Lundberg risk model with
exponential claims, where the parameter A of the exponential
inter-arrival time is a r v.

Ma,B)

one obtains Pareto inter-arrival times and the probability of
ruin can be calculated explicitly as well. Similarly as before, for
Ao = Oc, one can write
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Interarrival times: dependent Pareto

MNa+1)—T(a+1,c80 — ub)

W) = eBx(B—2)

cllr(a)
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Thus, the probability of ruin decays again as fast as u~! to
, _ [(a, Bch)
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the probability of net profit condition not being fulfilled.
Atu=0
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Proposition

The dependence model characterized by

3

P(Xy>xi,..., %, >x,|©=0)= ][] e
k=1

can equivalently be described by having marginal claim sizes
X1, X2, ... that are completely monotone, with a dependence
structure due to an Archimedean survival copula with

~ \-1
generator ¢ = (F@> for each subset (Xj,...,X;,) (for

Jis- -+, Jn pairwise different), where Fo denotes the
Laplace-Stieltjes transform of Fg.



Dubey 1977
For N(t) ~ Poisson(N)

Estimates for A
o \(t) = E{A | N(t)} — exact form for the ruin probability

o \(t)= @ — moments of ruin
. S\(t) = aZﬁ(tt) — approximation of the probability of ruin,

considering A to be the “credibility” estimate.

Note: This model was theoretical basis for the Bonus-Malus system

for the Swiss obligatory car insurance.



Asymptotic ruin probability with worsening
risks, or with infinite mean risks

e Joint work with Dominik Kortschak & Pierre
Ribereau (Lyon)

* Worsening risks means that the tail becomes
heavier and heavier, due to phenomena like
climate change or sectorial inflation.



Two models with worsening risks

Concretely let N; be a Poisson process with intensity A and X; are independent
Pareto distributed random variables with distribution £y = (14 /d;) ™t where the change
of the distribution over time is characterized by

d
g — 1

E[X,]= (1+cat). (1)

We consider the risk process (p > 0)

Ny

t 1+ pAd(1 + ¢, 1)?
R, = u+/ 1+ pAE[X)dt =Y X7 =+ ( 2’:) (;((-1 13 " _ Y X7
0 i—=1 o500 ™ i—1

where 7; is the time of the i-th jump. Further we will denote with S; = Z;\:fj X7 and

(1 4+ p)Ad(1 + cut)?
QC:Q(G'[} — 1) '

p(t) =



Two models with worsening risks

We will now study two sets of parameters that assure that (1) holds. In the first model
we change the parameter a which means that the distribution of X; gets more and more

heavy tailed. In this case we have that Fil}(:l,) = (1 + 2/d)~" where

an — 1
o = — + 1.
| + ot

we will call this variant model 1. An obvious alternative to this model 2 where we only

. (2 _
change the other parameter. i.e. we choose F ) () = (1 + x/d;)” " where

dy = d(1 + cqt).



Two models with worsening risks

We now want to compare these two models. An obvious method therefore is to consider
the ruin probability ©(!)(u) = P(inf;~q Rf) < 0). Denote with p = E [X] = —4~. We get

ag—1"

?«’“)(“)NA\/ o )(1+u/d)l/ (1 + )~ tar ~ 0 \/ e

(14 p)Aca 0 2 (14+p)rea
._ A\ ” —QQ > /1 /L —a
2 (1) ~ —+/u (1 + ﬁ) / ( + P Ht) dt

A a1 [ (1 A\ O
~ S0y / ( + f) & T) dt.
Coy 0 t 2c,



Ruin probability for a risk process with infinite mean
In this section we considering the following risk process.

N

Ry = Ry(u) = u+ -p(t)—Z X;
i=1

where the X; are 11d with distribution function F', N; is a Poisson process with intensity
A and p(t) are the premiums collected up to time #. We are interested in the infinite time
ruin probability

P(u) = P(inf Ry < 0).

t=0

Theorem 4.1. If X1, Xo, ... are iid random variables with distribution F(x) that is regu-
larly varying with index 0 < o < 1, and regularly varying density f(x). If further p(T') is
reqularly varying with index 8 > 1/a (continuous and strict increasing) then

(u) ~ A /ﬂm F(u+p(T)dT ~ Ap~t(u)F (u) fﬂm(l + t7)~edt
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L
Introduction

Ehrlich & Becker (1972) = 2 types of economic prevention :

: Decrease claim probability
- Complements insurance
- Observable

: Decrease claim amounts
- May substitute insurance
- Non observable

- |Is prevention observable?
- 2-period models and deterministic claim amounts
- Rational individual (expected utility) LABORATOIRE

- Prevention demand model SAI-

11 SCIENCES ACTUARIELLE
& FINANCIERE



e
Outline of the talk

* Optimal prevention with one type of claims

e Optimal prevention with two types of claims

* How to target the right policholders in terms of prevention?



Classical notation

Rt=u+ct-21i\21X,-

You all know this notation, I’'m too lazy to write it down.

Non ruin probability: ¢@(u) = P(Vt > 0,R; > 0) 2

Résene
20
|

- |
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Modeling self insurance

We assume that the prevention effort is constant over time.

- p €10, c| : prevention investment per unit of time
- h : nonincreasing function

R{!(p) = u+ (c —p)t-Xi h(X,p)

—> Reinsurance models

Waters, H. R. (1983). Some mathematical aspects of reinsurance. Insurance: Mathematics and
Economics, 2(1), 17-26. L ABORATOIRE

SAI-

SCIENCES ACTUARIELLE
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Modeling self-protection

We assume that the prevention effort is constant over time.

Soi

- p € [0, c| : prevention investment per unit of time
- A(.) : positive, decreasing and convex

- N;(p) : Poisson process with intensity A(p)

R, ) =u+(c —p)t-IPx,

¢(u,p) = P(Vt>0,R,(p) > 0)

LABORATOIRE

SAI-

SCIENCES ACTUARIELLE
& FINANCIERE



...
Maximise surplus at a given time

If1 < % thenvu > 0,¢(u,p) =0

Problem 1 :

Find p** = argmax (E (Rt(P)))

Proposition 1 :

Problem 1 admits a solution iff
1
. > =
A'(0) = .
Then, p™* satisfies
K —A'(p™) = i LABORATOIRE

SAI-
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Maximise non ruin probability

Problem 2 :

Find p* = argmax (¢(u, p)).

Proposition 2 :

Foru > 0, Problem 2 admits a solution iff

Then p* satisfies

.

/

p” does not depend on u!

18

LABORATOIRE

SAI-
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Maximise adjustment coeff.

— My (s)

|
|
My (s): f.g.m. of X |
Assume that Vs > 0, My(s) < oo, I
or . |
ds* such that Vs €]0,s*[, Mx(s) < oo,and Vs = s*, My(s) = oo. |

Definition :
Adjustment coefficient k(p) such that

1+ 705 %(P) = My (x(p)).

Borne de Cramer Lundberg :

1-¢(u,p) < e *P,

Proposition 3 :

p* maximises k too
19




Maximise dividends up to ruin

Processus avec barriére

K: dividend barrier

L:(p): cumulated dividends paid up to t

O

SCR Cov. Ratio =250

%o
¢(u, K, p): Probability of ruin before reaching
K

Réserves

Segerdhal (1970) :

— Rt
= - 0 RiK
K

v
(1 - E(u' Krp))(c _p) l - oL /l/

E(L)(p) =

A(p) [ E(K — x,K,p)dFy(x)  %-

I | | I
Proposition 4 : 0 5 10 15

Temps

LABORATOIRE

SAF
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p* maximizes [E(L;) too

20



Extension: prevention threshold

A(p)

A(0)

P1 p

LABORATOIRE

SAI-
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e
Outline of the talk

* Optimal prevention with one type of claims

* Optimal prevention with two types of claims

* How to target the right policholders in terms of prevention?



Two-risk model

Two types of claims:

- light, frequent claims (Xll ), average pq < 0
- Poisson process N{ with intensity A4

- less frequent, more severe claims (X2 ), average py < Hp < 00
- Poisson process N2(p) with intensity A,(p)

Nl NZ
R(p)=u+(c—p)t- 35 Xl- L1V X
Equivalent to
N¢(p) with intensity A; + A, (p)

Claim amounts XP equal to

1 . oy )\,1
X~ with probability )
2 14 A2(p)
X* with probability A )
Ne®)
Rp) =u+@ —p)t- ) X7
i=1
- Self-insurance and self-prevention LABORATOIRE

SAF
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Maximize non ruin probability

Problem 3

Find p*(u) = argmax (¢ (u,p))

p*(u) dependsonu
— uU=10

Probabilité de ruine

LABORATOIRE

I I I I I I I
0.0 0.5 1.0 158 20 25 3.0 SAI-
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Proposition 7 : solutionu =0

For u = 0, Problem 3 admits a solution iff

/ A + A2(0
_ }\2(0) _ 141 - Zc( )”2 > 0 (*)

Then, p*(0) satisfies

’ * A + A2 (p*(0)
k A, (p*(0)) = & C_;(*Izo) e /

LABORATOIRE

SAI-
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HMRL

Definition: HMRL order

X1 <pyuyrL X?if

ftoo 1 — Fyi(w)du - ftoo 1 — Fy2(uw)du
E(X1) B E(X2)

- /

Vit=0,

Proposition 8 : Sufficient condition for existence of p™(u)

If (*) is satisfied, and if X1 <pur. X2, then Yu = 0, p*(u) exists and p*(u) > p*(0)

LABORATOIRE

SAI-

26 SCIENCES ACTUARIELLE
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Proposition 9 : Light-tailed asymptotics

Optimal p,. satisfies

—25(Py)

Besides,

\_

(¢ —py) + L4E (3

*\)‘1X1+)‘2 (p;kC)XZ
T A+ay (1) (X! — x?)

lim p*(u) = p,

=1+ 4; (py)

Proposition 10 : When X2 is heavy-tailed

For p5 such that
U2

Pt | il + pad; (P%)

—25(P%)

we have

_|_

9(0,p%)  (p%)|  @(0,p5)(c — i)

lim p*(u) = p5,

Uu—0o

{ATOIRE

JAF

.
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From prevention before claims to prevention at claims

Climate change adaptation may be more feasible just after a claim
Future research: investigate the benefits of prevention at claim
Preventing so-called by-claims to occur,

or stopping Hawkes-like mechanisms (INAR processes)

Carbon footprint of claim management (BINAR processes)

Work in progress with Naushad Mamode Khan and Charles Minier

Papers are available at http://sl.isfa.fr

Global Association



THANK

CERA
Global Association





