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Motivation & Model Setup

Motivation

Pricing in incomplete market of new asset: utility indifference
pricing principle

Requires that we solve two (nonlinear) optimization problems:

Optimized expected utility of terminal wealth including asset
=

Optimized expected utility of terminal wealth without asset

Hardly any closed-form solutions. See for example (Duffie et al.
1997, Cvitanic et al. 2001, Musiela & Zariphopoulou, 2004,
Carmona, 2009).
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Motivation & Model Setup

Preferences

Closed-form solutions that exist in continuous time for optimal
portfolio problem are often based on

invariance in optimized preference structure and

suitable stochastic dynamics.

Example:

CRRA utility on R+ (Merton, 1969): for 0 < γ 6= 1

VT (w) = Uγ(w) :=
w1−γ

1− γ
⇒ Vt(w) = a(t)Uγ(w).
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Motivation & Model Setup

Motivation

Goal: to calculate exact optimal investment strategies for

discrete time Markov process and
simple preference structures

that are ’close to’ a given specification.

Risk aversion parameter and parameters for dynamics of risk
factors are difficult to measure exactly anyway.
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Motivation & Model Setup

Asset Dynamics

We use the following model:

Discrete Markov dynamics (t, St ,Yt) for risky asset S and other
(untradeable) risk factors Y on finite state space

T =
n⋃

m=0

Tm, Tm =
m⋃

k=0

m⋃
j=0

{(m∆t, Sm
k ,Y

m
j )},

with transition probabilities which ensure that (t, St ,Yt) ∈ T .

In our examples we take dim(Y ) = 1 and two possible successor
values for each Sm

k and Y m
l .
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Motivation & Model Setup

Preferences

Utility for terminal wealth (with and without contingent claim)
restricted to class H of functions f : R→ R ∪ {−∞} satisfying

f is closed proper concave, so epigraph

Epif = {(x , y) | y ≤ f (x)}

is a closed convex subset of R2, and

on its effective domain Ef = {x ∈ R : f (x) > −∞}, f is
piecewise linear and the number of points where f is not
differentiable is finite on Ef , and

there exists an x̄ ∈ R such that f (x) is a real constant for all
x ≥ x̄ .

Interior left- and righthand side derivatives exist and are monotone.
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Motivation & Model Setup

Preferences

Figure: Example of a function in class class H.
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Motivation & Model Setup

Optimization Problem

For a given utility function U ∈ H, we look for strategy φ maximizing
expected utility of terminal wealth at T = n∆t:

max
φ∈Φ

E[U(W φ
T )] (1)

subject to

W φ
t+∆t = φt(Xt)

St+∆t

St
+ (W φ

t − φt(Xt))R(t) (2)

where strategy φ for investment in risky asset can depend on state
Xt = (St ,Yt ,Wt), R is deterministic risk-free rate, and W φ

0 = w0 the
initial wealth.
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Motivation & Model Setup

Indifference pricing

Value function for problem without and with contingent claim paying
Ψ(XT ):

Vt,St ,Yt (Wt) = max
φt ,φt+∆t ,...,φT

E[U(W φ
T ) | Xt ]

Ṽt,St ,Yt (Wt) = max
φ̃t ,φ̃t+∆t ,...,φ̃T

E[U(W φ̃
T −Ψ(XT )) | Xt ]

Selling price πΨ(w0) of claim Ψ must satisfy

V0,S0,Y0(w0) = Ṽ0,S0,Y0(w0 + πΨ(w0))

Structure we exploit: for every possible value of (t, St ,Yt), optimal
strategy only depends on wealth, so we write

φt(Xt) = βt,St ,Yt (Wt).
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Main result

Main Result

Invariance: dynamic programming principle maps H on itself!

Theorem

Assume Vt,S ,Y ∈ H for all (t, S ,Y ) ∈ Tm+1. Then

Vt,S ,Y ∈ H for all (t, S ,Y ) ∈ Tm.
Functions w → βt,S ,Y (w) and w → Vt,S,Y (w) are continuous on
their domain for all (t, S ,Y ) ∈ Tm.
Graph of optimal strategy {(w , βt,S ,Y (w)) : w ∈ R} ⊂ R2 must
lie on grid of 2 sets of parallel lines that can be pre-computed.
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Main result

Optimal strategy is subset of known grid
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Main result

Main Result

Theorem

Assume that Vt+∆t,uS ,? and Vt+∆t,dS ,? have singular values
xu1 < xu2 < ... < xuNu

and xd1 , x
d
2 < ... < xdNd

respectively, and let

zui = V
′−
t+∆t,uS ,?(x

u
i ), zdi = V

′−
t+∆t,dS ,?(x

d
i ).

Then xk (the singular values of Vt,S ,Y in reverse order), the optimal
strategies βk = βt,S ,Y (xk) and the left-hand side derivatives
zk = V

′−
t,S,Y (xk) satisfy, for k ≥ 1,

xk = R−1(qxuik + (1− q)xdjk ), βk = (xuik − xdjk )/(u − d),
zu = p

q
zuik , zd = 1−p

1−q z
d
jk
,

zk = zu ∧ zd , vk = vk−1 − zk−1(xk − xk−1),
iuk+1 = iuk − 1{zk=zu}, idk+1 = idk − 1{zk=zd}.
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Main result

Efficient Indifference Pricing

Consequence:

Fast numerical algorithms: sequence of binary choices

On finite state space in finite time we generate exact solutions
for value functions, which must be in H
But increasing concave functions in H also allow ”deleting” of
singular points which reduces computational cost for a priori
given error bound: gives ε-close strategies.

This makes calculation of utility indifference prices relatively easy.
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Main result

Approximation in H

Figure: Example of a function in class H and its approximation.
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Convergence

Convergence to viscosity solution

To find approximations for investment strategies in continuous
time problems we consider the HJB equation with (general)
terminal utility Ū and value function V̄t,S(w):

V̄T ,S(w) = Ū(w − Φ(S))

0 = ∂tV̄ + µS ∂S V̄ + 1
2
σ2S2 ∂SS V̄

+ max
π∈R

[
(r + π(µ− r))w ∂w V̄ + 1

2
σ2w 2π2

]
for a positive, bounded and globally Lipschitz continuous
function Φ (Y is taken constant here).

We assume that

(∀w ≥ w̄) 0 ≤ Ū(w)− ū ≤ c̄(w − w̄)1−γ̄

for appropriate constants ū c̄ , w̄ , γ̄, which ensures solutions
exist.
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Convergence

Convergence to viscosity solution

We create sequence of approximations with n ∈ N∗ equidistant
timesteps, nν terminal singular points at distance n−ζ with ν > ζ > 0,
and denote solutions by V̄ n

t,S(w) for all (t, S ,w) ∈ T n × R.

Theorem

If the HJB equation has a unique viscosity solution V̄ that is
increasing and concave for (t, S ,w) ∈ Z = [0,T ]× [0,∞)× [w̄ ,∞),
then we have for all (t, S ,w) ∈ Z:

lim
n→∞

T n×R3 (tn,sn,wn)→(t,S ,w)

V̄ n
tn,sn(wn) = V̄t,S(w).
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Numerical Examples

Exponential Indifference pricing

Model of (Musiela & Zariphopoulou, 2004) in continuous time

dSt = µSStdt + σSStdW
S
t ,

dYt = µYYtdt + σYYtdW
Y
t , d〈W S ,W Y 〉t = ρdt,

with only S tradeable.

Indifference price for contingent claim Ψ(YT ) under preferences
U(x) = −e−γx can be shown to be

πcont =
lnE[ eγ(1−ρ2)Ψ(YT ) dQ

dP ]

γ(1− ρ2)
,

dQ
dP

= e−
µ
σ
W S

T−
µ2

2σ2 T .
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Numerical Examples

Exponential Indifference pricing

Figure: Parameters S0 = K = 5, σ = 10%, rest as before.
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Numerical Examples

Optimal Strategies under Stochastic Volatility

Model (Heston, 1993) in continuous time:

dYt = κ(θ − Yt)dt + ω
√

YtdW
S
t ,

dSt = (r + λYt)dt +
√
YtdW

Y
t , d〈W S ,W Y 〉t = ρdt,

with λ the market price of volatility risk parameter.
Optimal strategy under CRRA with parameter γ is (Kraft, 2005)

βcont
t,St ,Yt

(w) = w
(ea(T−t) − 1)(λ + γ−1(1− γ)ρσλ2)

γ(ea(T−t)(k + a) + a − k)

k = κ− ρλσ
1−γ−1 , c = γ

γ+ρ2(1−γ)
, B = −λ2(1−γ)

2cγ
, a =

√
k2 + 2Bσ2.
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Numerical Examples

Approximation in state space

Figure: Approximation on grid implemented by ”splitting”probabilities.
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Numerical Examples

Nonlinear Strategies

SAHARA preferences (Chen, Pelsser & Vellekoop, 2011) :

Uγ,β(w) =
1

1− γ2

(
w +

√
β2 + w 2

)−γ (
w + γ

√
β2 + w 2

)
in standard Black-Scholes economy.
Optimal strategy:

βcont
t,St (w) =

µS − r

γσ2
S

√
w 2 + β2e−2(r−1

2
((µS−r)/(γσS ))2)(T−t),

shows ’gambling for resurrection’.
Risk aversion is always positive but not monotone.
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Numerical Examples

Approximations for continuous time problems

Figure: Parameters r = 10%,
√
Y0 = 25%, ρ = 10%, ω = 39%, κ = 1.15,

θ = 16%, λ = 1
3 , γ = 2

3 , α = 2, β = 2.66.
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Conclusions

Conclusions and Further Research

Calculation of exact optimal investment strategies in discretized
models is possible for ε-close preferences

Good approximation of optimal value function does not
necessitate smooth approximation of optimal investment strategy

Algorithms are simple; mathematical work is in proving
continuity of optimal strategy on the grid and convergence to
viscosity solutions.
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