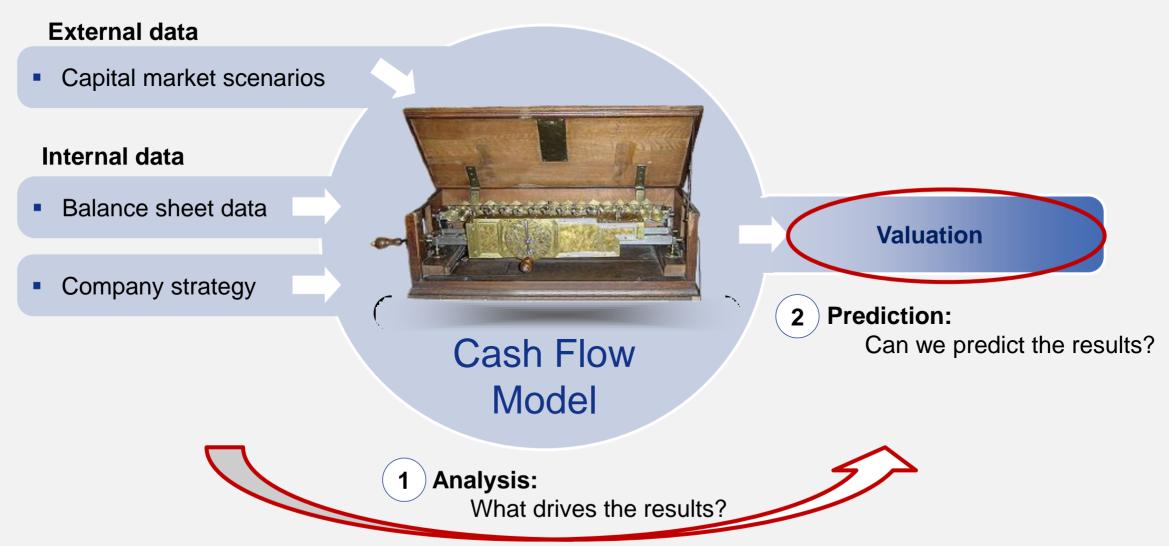
Machine Learning in Life Insurance

Searching for Patterns in Cash Flow Models

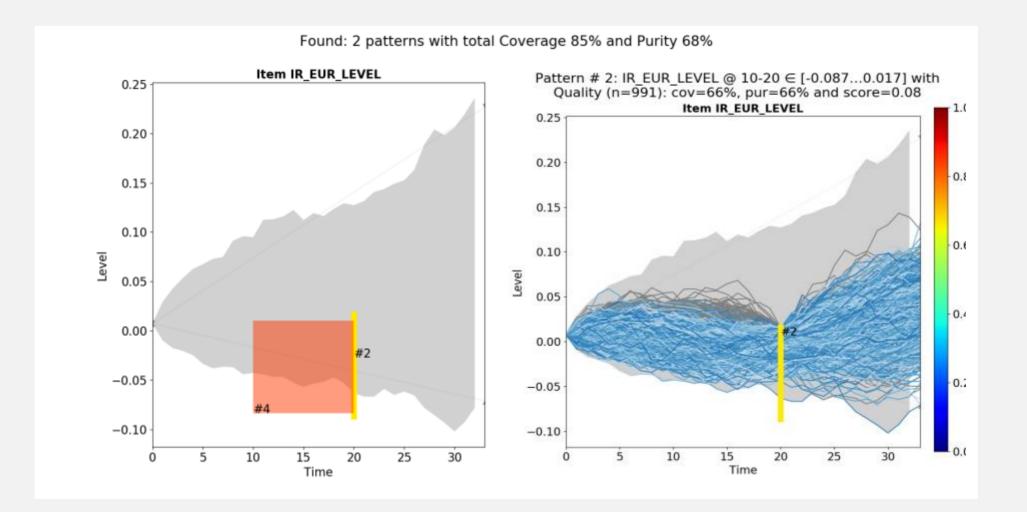
Pierre Joos

Hannover, 16. May 2019

Issue: Life insurance valuation is extremely complex



Analysis: Long-term low interest rates are worst case for insurer



3

Prediction: GBMs can predict the PVFP for a given market scenario quite good

4

Agenda

1 Cash Flow Models

- 2 Analysis
- 3 Prediction

Life insurance policy

(Permanent) Life insurance:

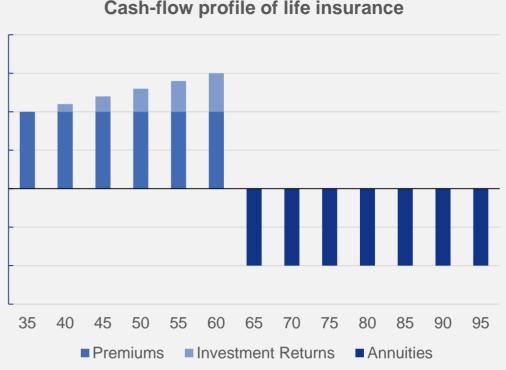
Financial contract between policy holder and insurer where premiums are accumulated and paid out later

Cash-flows:

- Policy holder pays premiums until retirement
- Returns from investments are accumulated
- Insurer pays annuity after retirement

Uncertainties:

- Investment returns
- Longevity of policy holder
- → What is the total profit / loss of this policy?



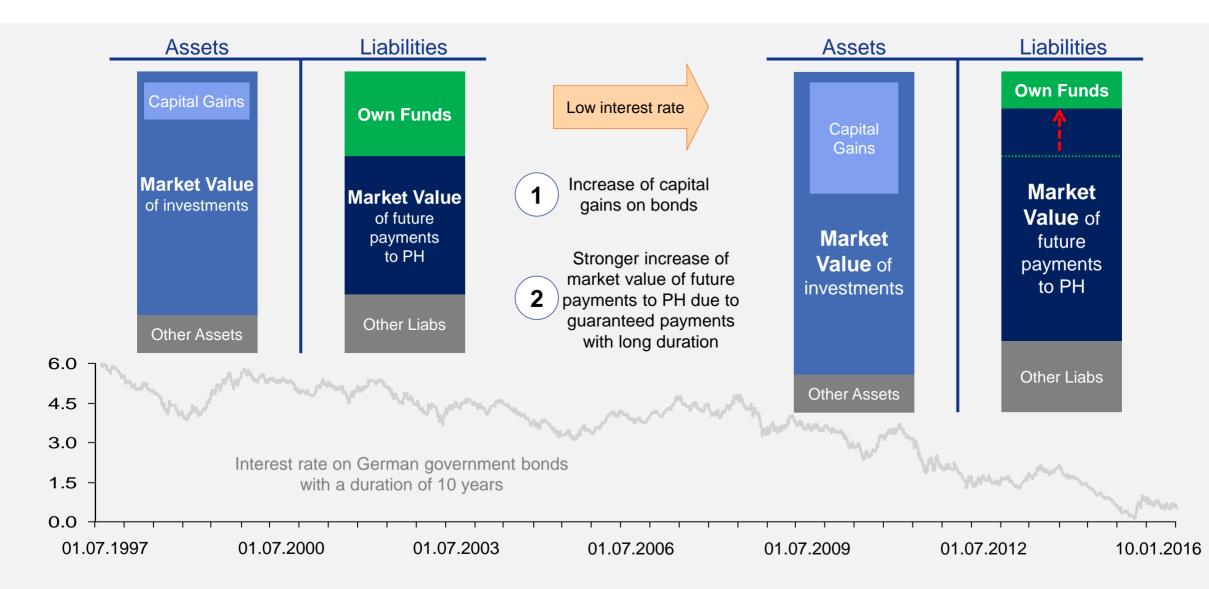
Cash-flow profile of life insurance

© Allianz SE 2017

Life insurance balance sheet in Solvency II

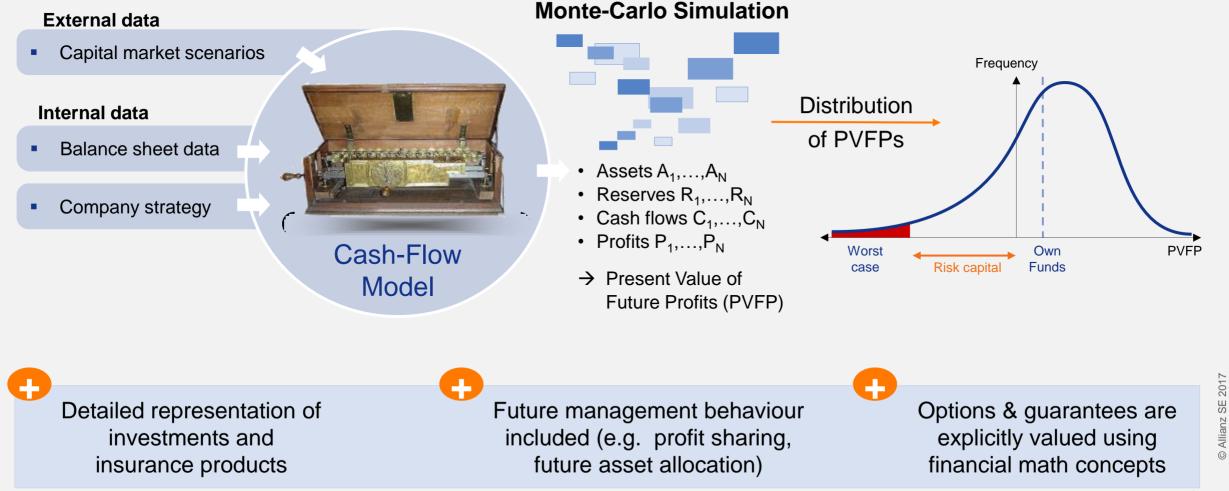
Policy view Cash-flow profile of life insurance 90 95 Premiums Investment Returns Annuities

Market changes impact balance sheet



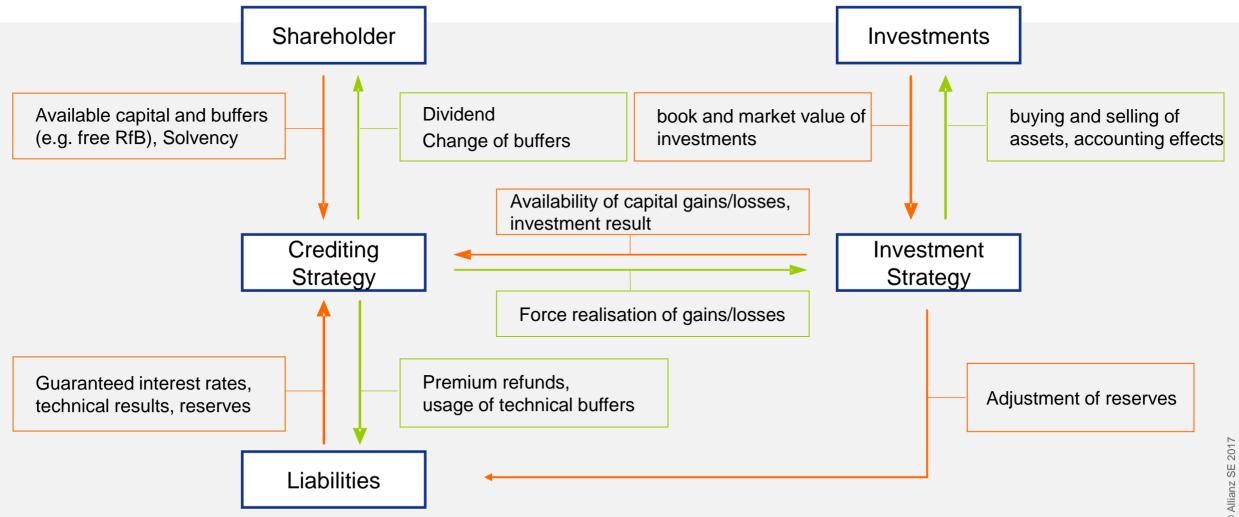
8

Cash flow models (CFMs) are central to valuation

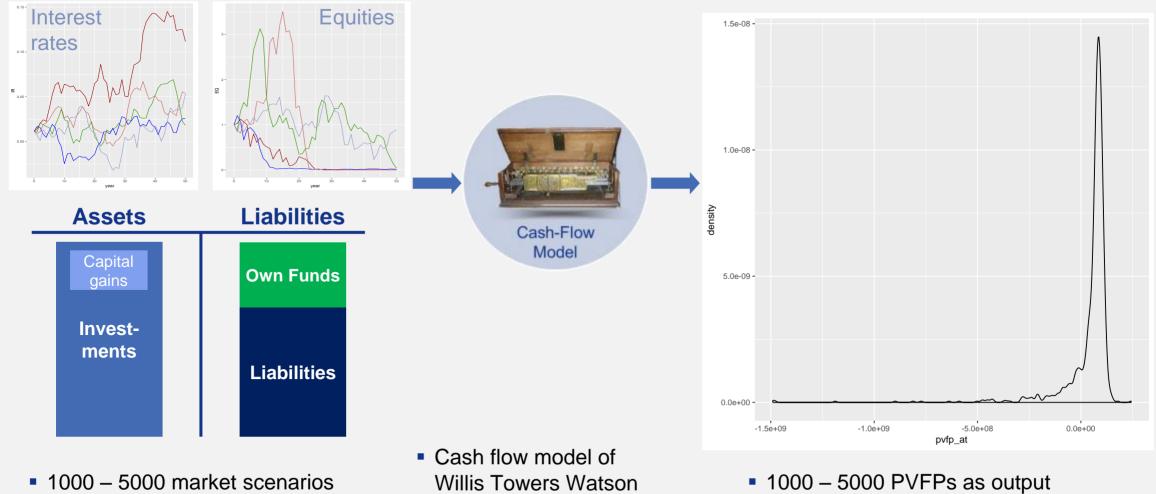


9

CFMs project complex annual decision processes...



... and are applied to a variety of different market scenarios

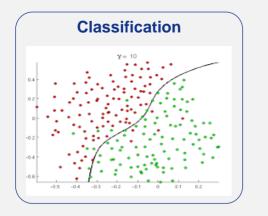


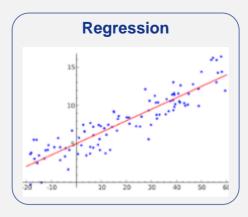
Typically 10+ market factors

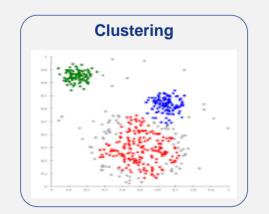
Average German insurer

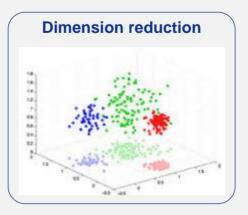
- Stochastic nature of results

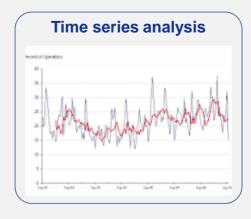
Machine learning is now able to tackle complex problems...

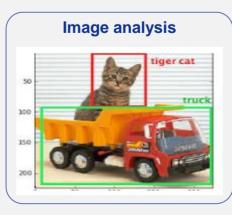








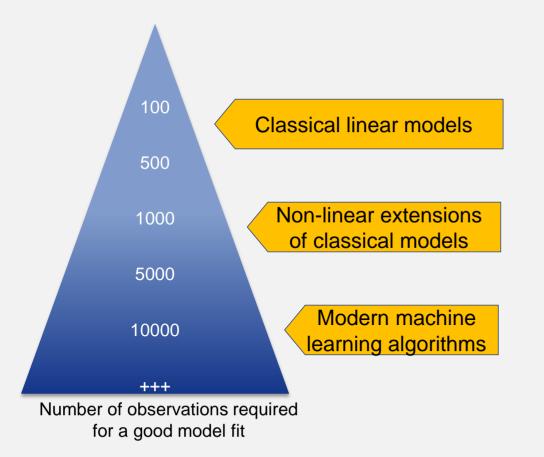




Other

Text & speech analysis

...depending on the quantity and quality of the available data



Classical (linear) methods have advantages

- Better interpretability
- Faster calibration

Data quantity and quality is critical for the model choice

- Representative period of time
- Covering relevant special cases and not only the "average"
- Target variable as objectively as possible

Risk of overfitting with too complex ML models

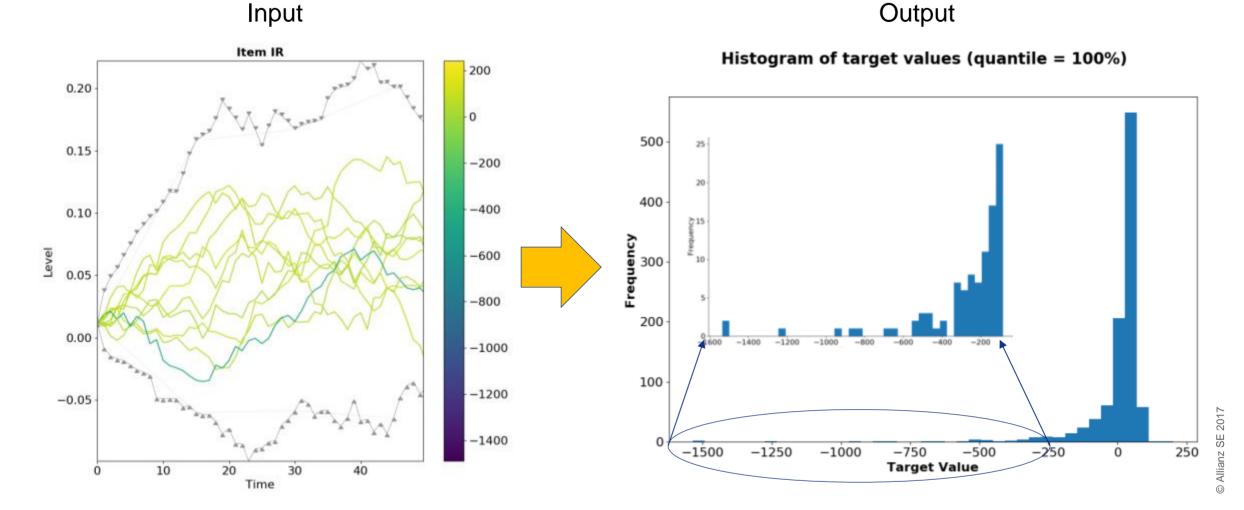
Agenda

1 Cash Flow Models

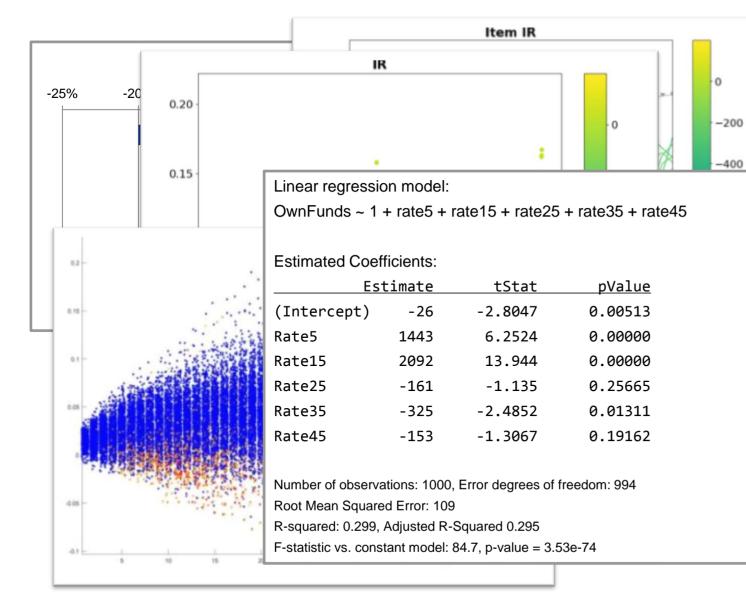
2 Analysis

3 Prediction

Which scenarios are responsible for extreme losses?



Traditional approaches provide limited insights



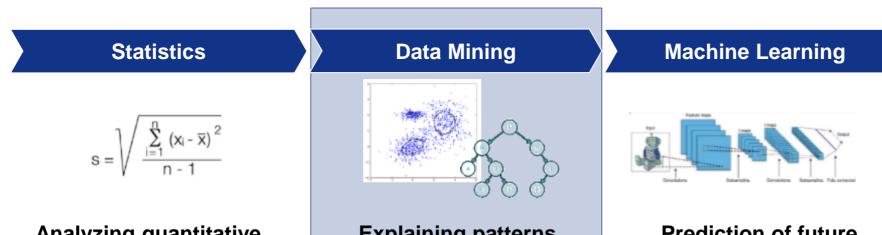
Traditional approaches:

- Sensitivity analysis
- Plot worst scenarios
- Mulit-dimensional plots
- (Linear) regression

Issues:

- Only linear or 1-dim dependencies are identified
- Analysis often requires additional runs of the CFM
- Time-consuming manual analysis

The evolution of data analytics



Analyzing quantitative information

- Descriptive analysis and hypotheses testing
 - Scientific sub-topic of mathematics
- "Data generating process"

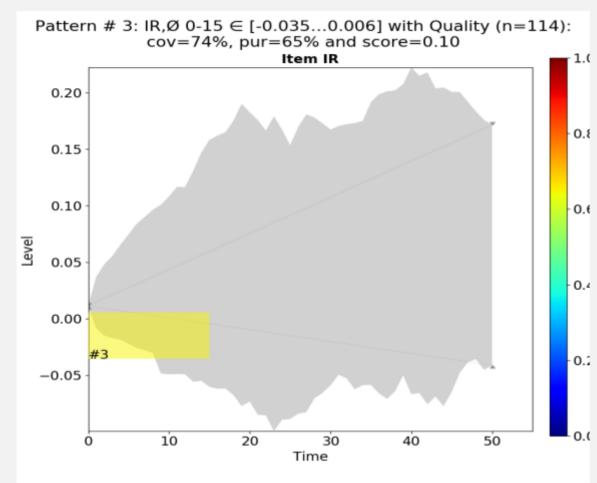
Explaining patterns in the data

- Information extraction from large data sets
 - Visualization and structuring
 - "Patterns"

Prediction of future based on experience

- Flexible models for complex data sets
- Model learn from data / experience
 - Prediction

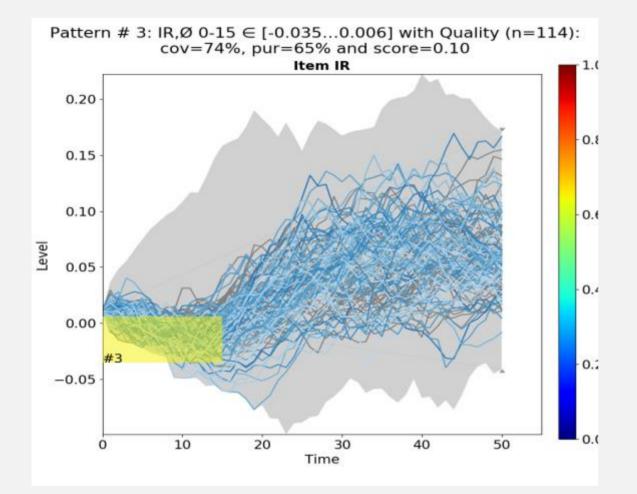
What is a pattern?



- The algorithm searches for patterns which are in the scenarios of certain target (e.g. lowest OFs)
- A pattern was found for interest rates (Item IR)
- Colored horizontal bar indicates time range, gauge and value range:
 - Horizontal bar = average over that time within a certain range
 - Width: time range between year 0 and 15
 - Height: value range between –3.5% and 0%
- Quality of this pattern is shown visually (color of bar) and as text in heading:
- Coverage (cov=74%): fraction of targeted scenarios covered by this pattern
 - Purity (pur=65%): fraction of scenarios in this pattern belonging to the target

Allianz 🕕

How to read the detailed output



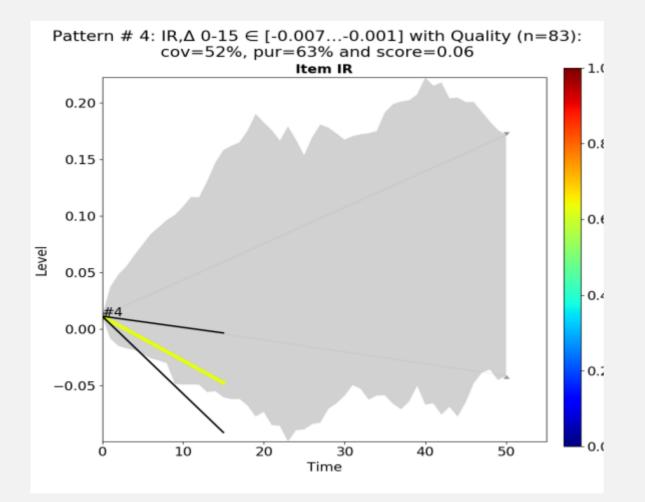
- All scenarios matching the pattern are shown as lines
 - Blue lines = scenario in target
 - Grey lines = scenario not in target
- Total range of all scenario is shown as light grey background
- 65% of all scenarios matching this pattern are in our target (purity)
 - Visually represented by color of the bar
- 74% of all targeted scenarios are covered by this pattern (coverage)

Interpretation:

Falling interest rates are driver for bad OFs

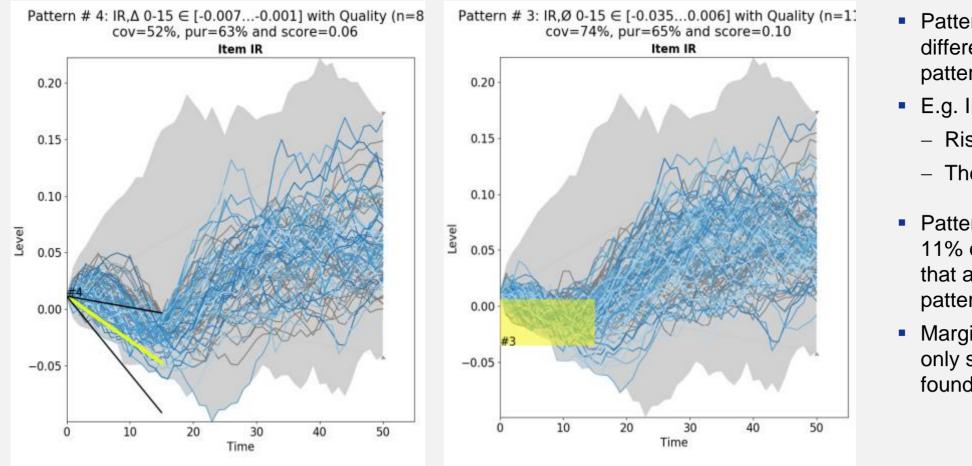
Allianz 🕕

Second pattern describes bad OFs



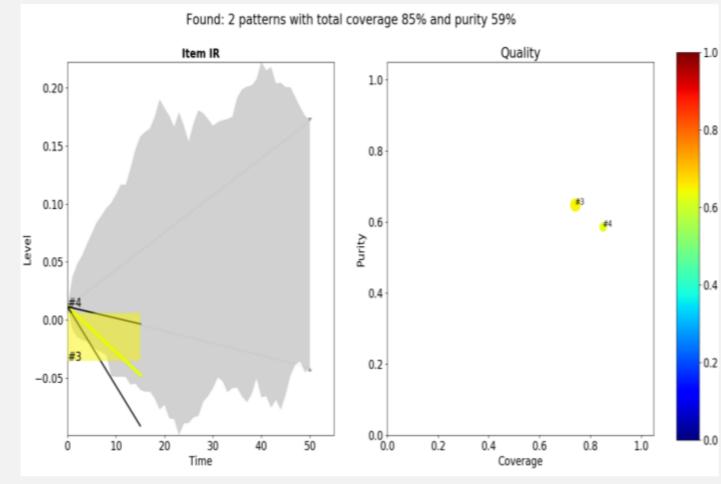
- Line indicates that interest rates change (Δ) over a the first 15 years
- Scenarios match this pattern if interest rates fall by 0.4% per year
 - Interest rates are down by approx. 6% after 15 y
 - Bandwidth is at ±5%
 - In this case this is equal to "IR at year 15 between –10% and 0%" (due to fixed rate at t=0)
- A scenario meeting this requirement has a probability of 63% to be in the target (purity)
- This pattern covers 52% of the targeted scenarios (coverage)
- Pattern #4 seems to describe same scenarios as pattern #3 before

Additional scenarios covered by new pattern



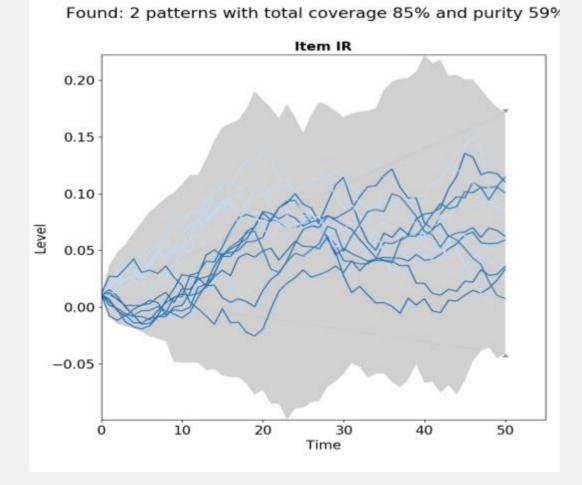
- Pattern #4 covers partly different scenarios than pattern #3
- E.g. IR scenarios, that
 - Rise first
 - Then fall abruptly
- Pattern #4 covers approx. 11% of scenarios in target that are not covered by pattern #3
- Marginal coverage can be only seen when sorting the found patterns

Overview plot shows all found patterns



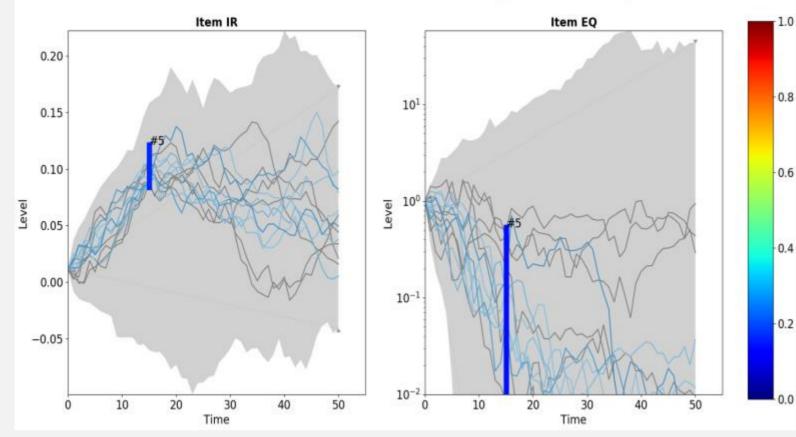
- Projection horizon was segmented into three buckets (1–15, 16–30 and 31–50 years) to reduce computational workload
- Search tries to find a combination of pattern with best coverage and purity
 - Each pattern has an identifier (#)
 - Different patterns are alternative explanations (OR)
- Quality plot on the right hand shows coverage und purity of all patterns together
 - Size and color of individual points show coverage and purity of individual pattern
 - Pattern #4 increases total coverage but decreases total purity
- Interpretation: Worst OFs are driven by declining interest rates
- \rightarrow Can we improve coverage further? ²²

Residual plot shows scenarios that did not match a pattern



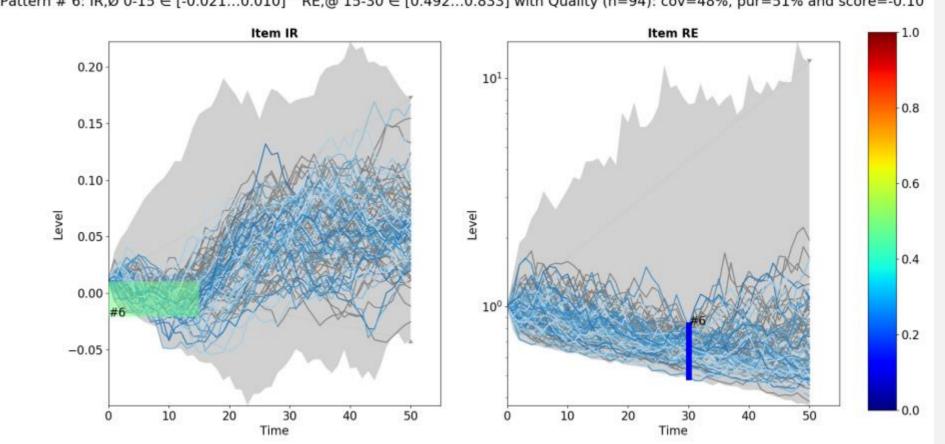
- Two groups of interest rate developments can be identified visually
 - Scenarios in the middle
 - Rising interest rates
- Search for further patterns should include combinations of variables and has to improve total coverage without diluting total purity too much

Algorithm can find more complex patterns



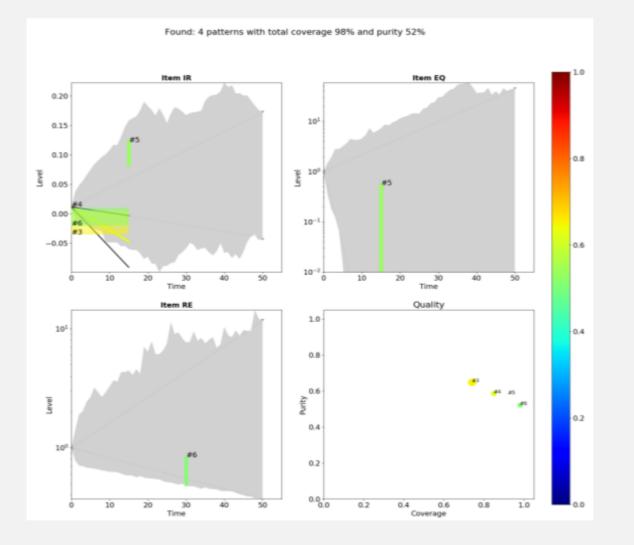
- n # 5: IR,@ 0-15 ∈ [0.084...0.121] $^{\circ}$ EQ,@ 0-15 ∈ [-3.055...0.532] with Quality (n=13): cov=7%, pur=54% and score=-0.10
- Pattern #5 has two conditions:
 - Interest rates have to be between 8% and 12% in year 15 (vertical line)
 - Equity index has to be less than 50% after 15 years (logarithmic scale!)
- Only scenarios meeting both conditions (AND) are included in this pattern
- This mechanism allows to identify interactions between variables
- Individual purities of both conditions (ca. 20%) are weaker than joint purity (54%)
- This pattern covers only a small part of our targets (coverage 7%)

Other combination found: RE decrease relevant when IR flat



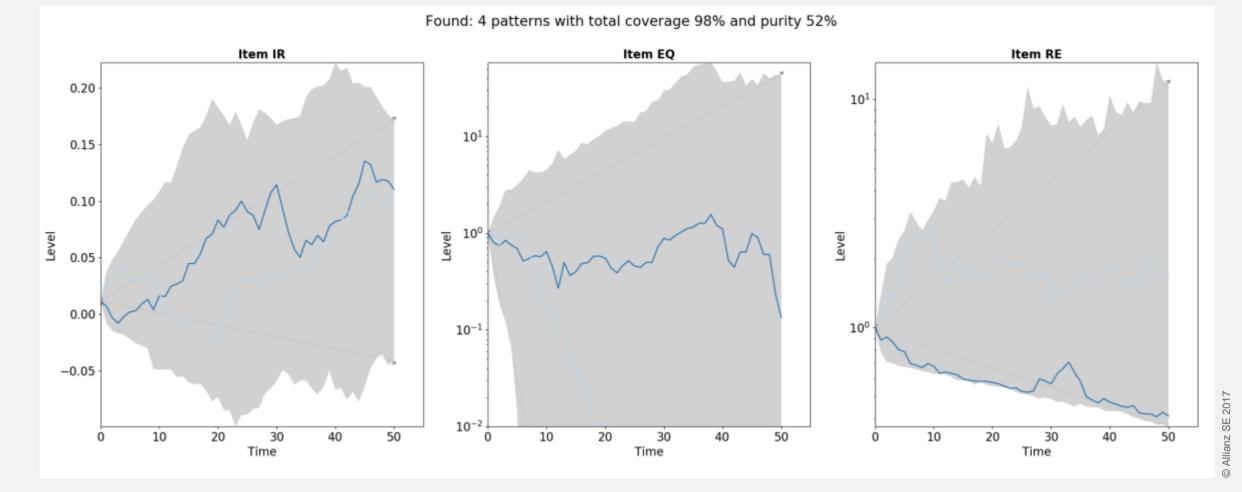
Pattern # 6: IR, Ø 0-15 \in [-0.021...0.010] ^ RE,@ 15-30 \in [0.492...0.833] with Quality (n=94): cov=48%, pur=51% and score=-0.10

Overview of results

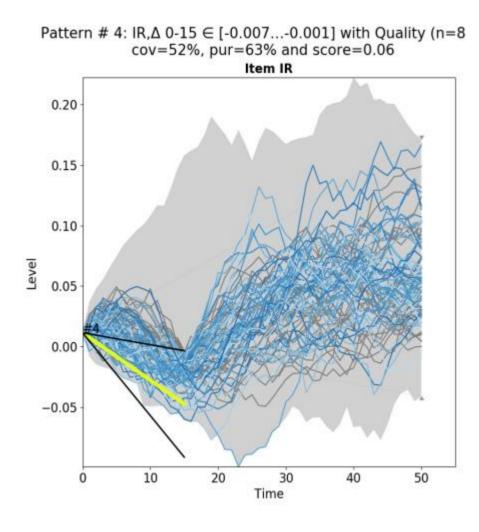


- Analysis of worst OFs
 - Data: Towers Watson, internal industry model
 - Closing: 2015 Q4
 - Scenarios: 1000 iterations (with neg. interest rates)
 - Target: 10% lowest quantile of OFs
 - Patterns with max 2 conditions
 - Patterns with min 50% purity
- Plot shows all found patterns
 - Falling interest rate as main risk driver visible
 - Negative real estate relevant if interest rates are flat
 - High interest rates only relevant if there is a significant equity shock at the same time (crafted scenario)

Only 2 unexplained scenarios remain



How does it work?



1. Simplify data

- Segment time data into buckets (here 0–15, 15–30 and 30–50)
- Define general patterns of scenarios within a bucket, e.g.
 - IR drops from 1% to around 5% within first bucket
 - IR in first bucket on average around -3%

2. Find optimal parameters of patterns

- Optimal w.r.t. coverage and purity to a given target (worst PVFPs)
- Using classical optimisation algorithm

3. Find optimal combination of patterns

- Test all combinations of patterns in order to find combination effects, e.g. low interest rates together with losses on real estate
- Criteria needed which combinations are preferred, e.g. as few conditions as possible (simple is better)

Allianz 🕕

Applications

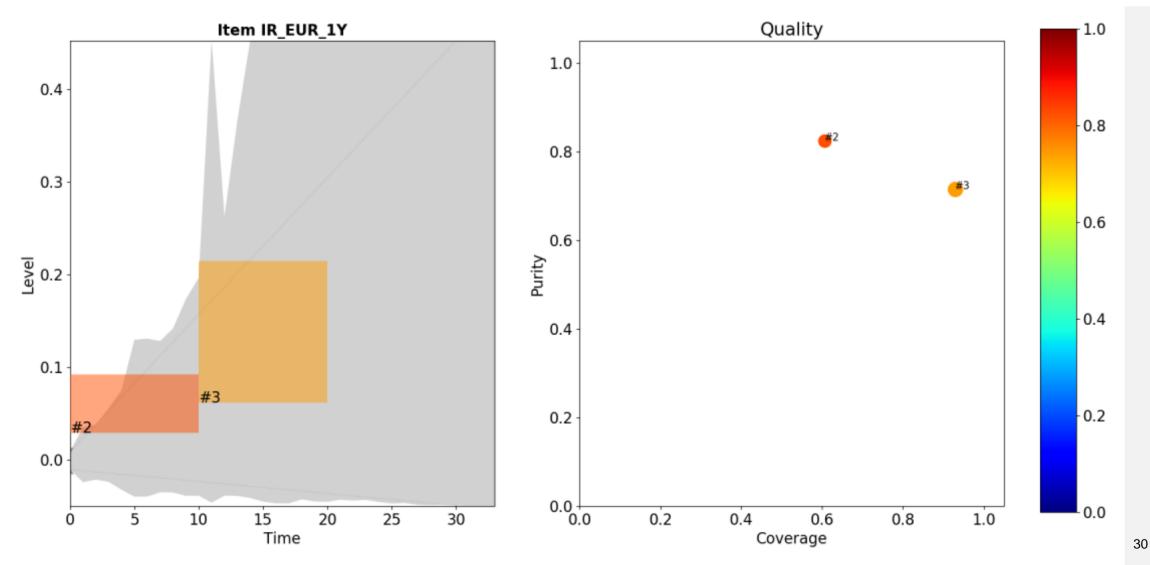
1. Static analysis

2. Analysis of changes

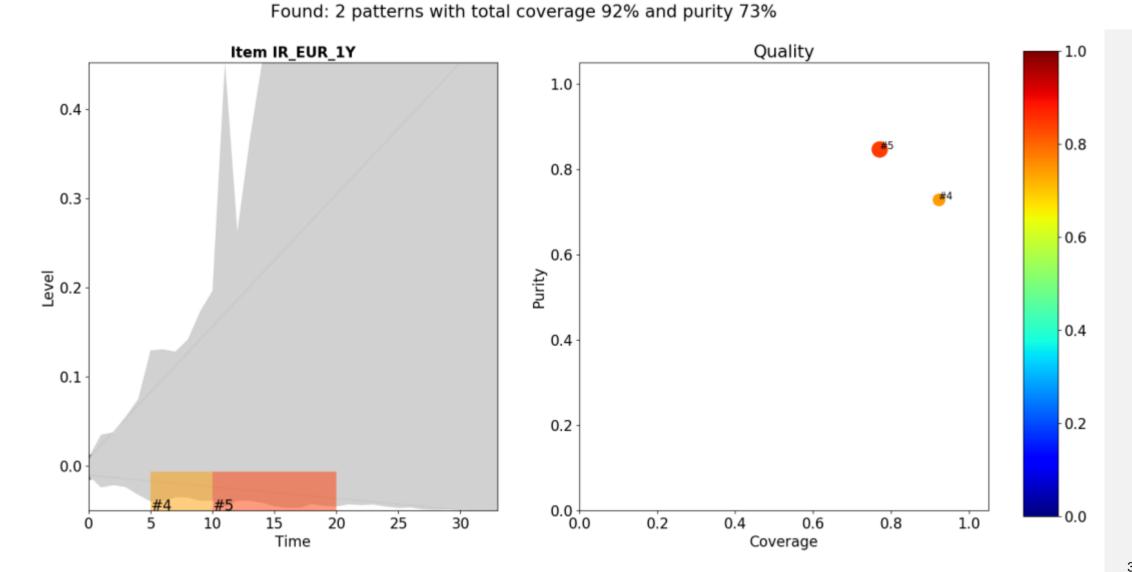
3. Model validation

- All funds are analysed based on closing runs
 - Model runs automatically in batch mode
 - Saves all graphics onto hard-drive
- Allows quick first analysis of sensitivities
- Analyse the changes from one quarter to the next
 - Run analysis on all funds for previous and current quarter
 - Analyse the changes in PVFP by scenario (if scenarios have same seed)
- Can also be applied to what-if-calculations
- Using the analysis tool to validate cash flow model after model change
 Run analysis on all funds and on multiple targets (low PVFP, high PVFP, ...)
- Results of analysis gives hints for further validation steps

Example 1: Protection product with IR up sensitivity

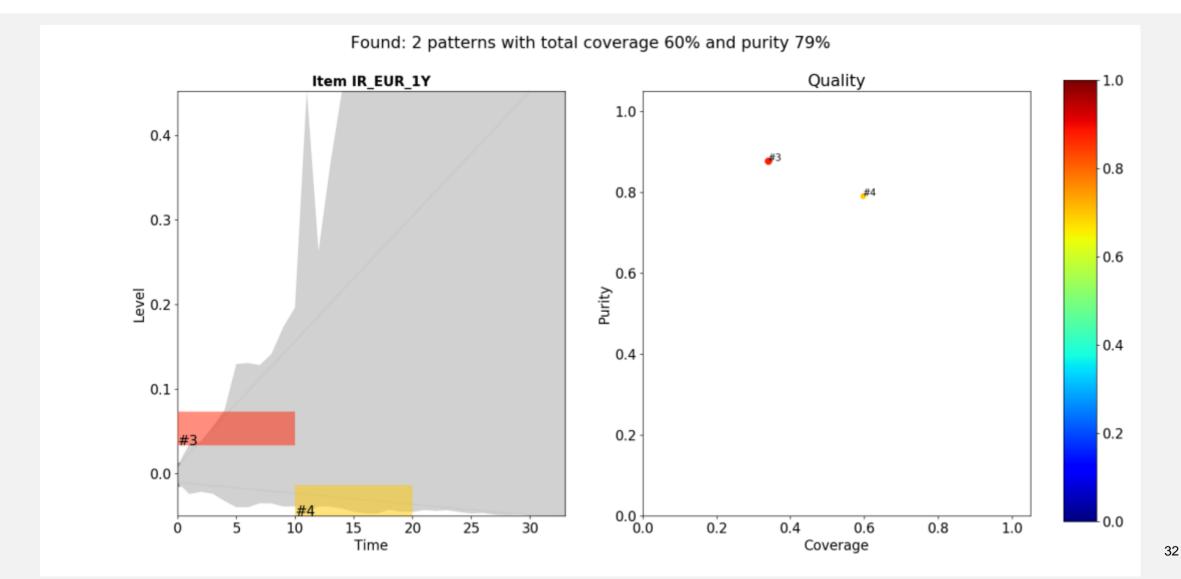


Example 2: Classic product with high guarantee

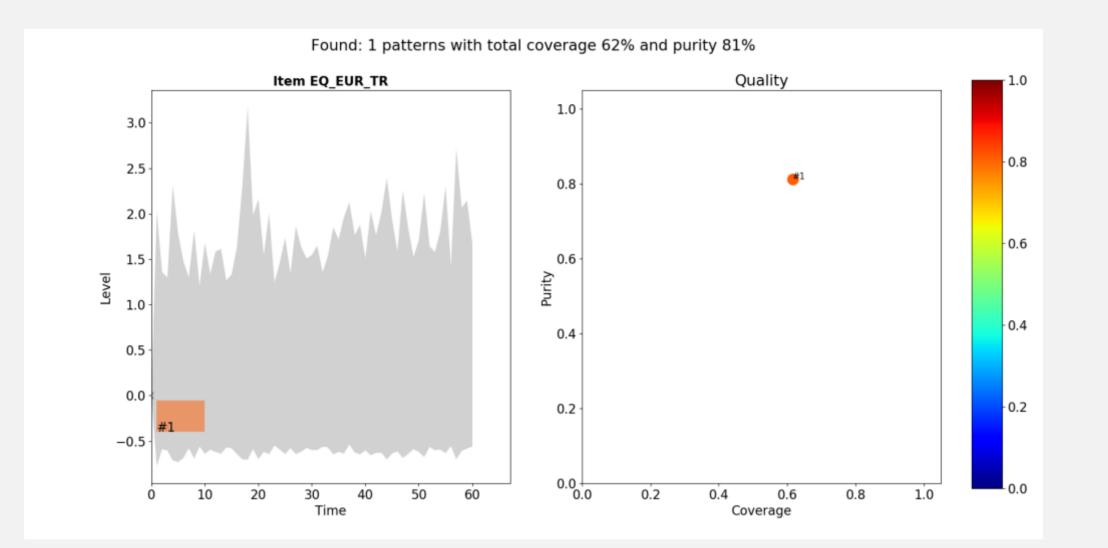


© Allianz SE 2017

Example 3: Classic product with guarantee and fixed surrender value



Example 4: Fund with significant equity investments



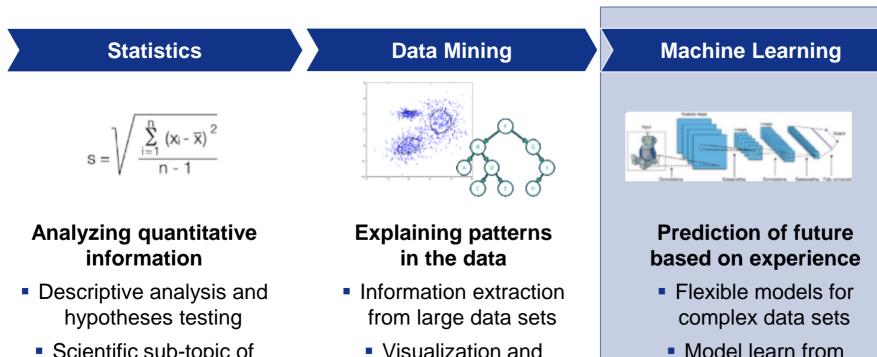
Agenda

- 1 Cash Flow Models
- 2 Analysis
- **3** Prediction

data / experience

Prediction"

The evolution of data analytics

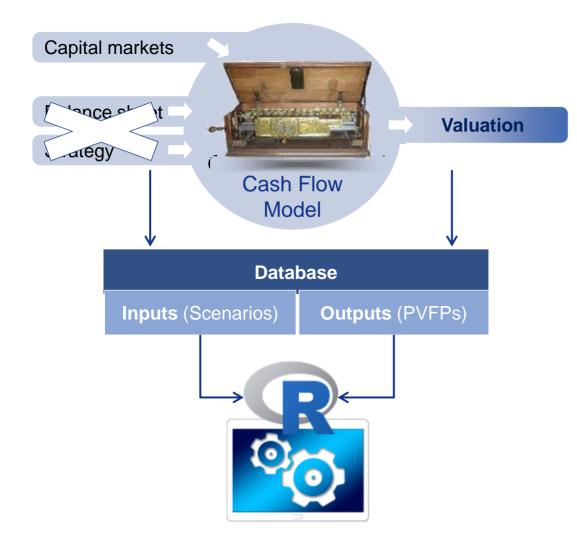


structuring

Patterns"

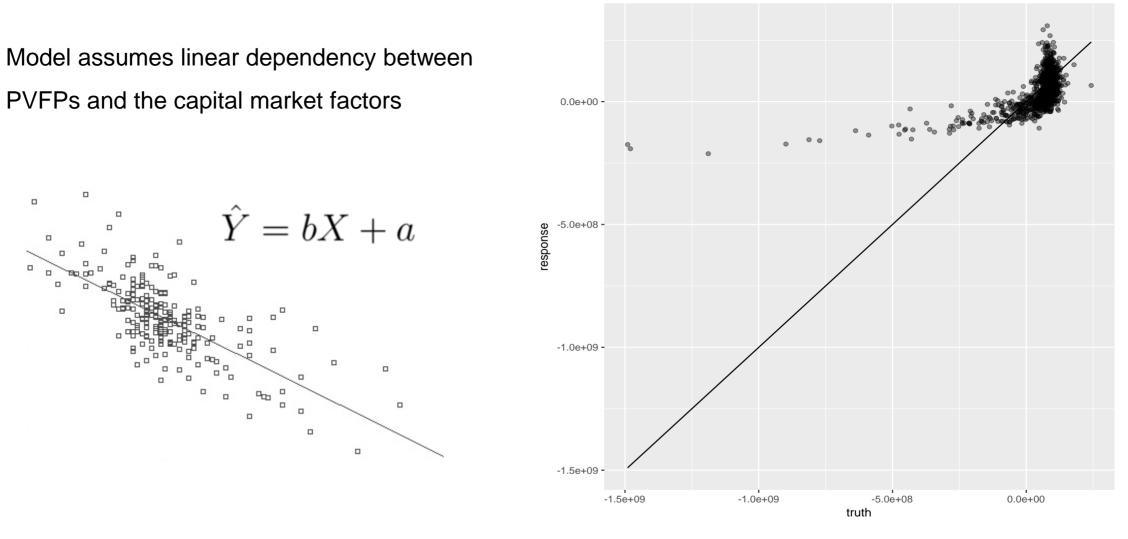
- Scientific sub-topic of mathematics
- "Data generating process"

What do we want to achieve



- Run time of cash flow models is very high
 - Projection of huge number of internal fields
 - Depends on granularity of assets and liabilities (model points)
- Store results from all calculations
- Apply Machine Learning algorithms to predict PVFP for a given capital markets scenario
- Use these models for quick calculations of PVFPs within the same quarter

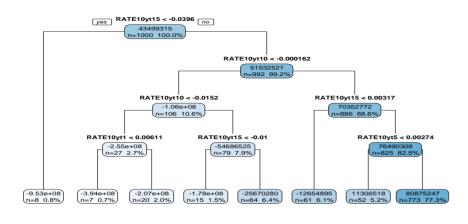
Linear regression

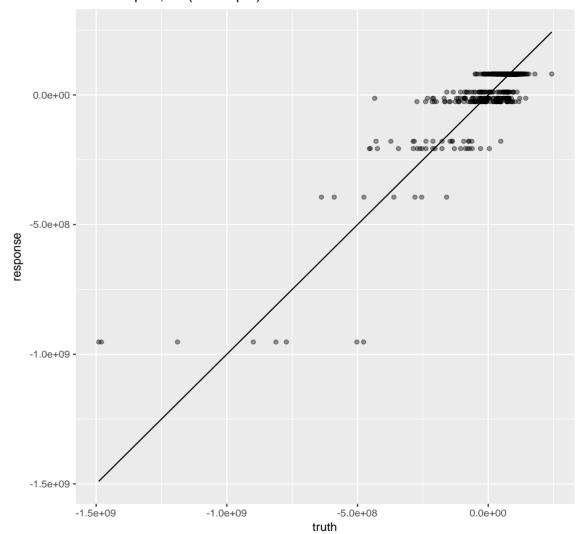


Method:Im, R^2 (in sample) = 32.33%

Decision trees

A decision tree defines a hierarchical sequence of rules (decisions) on the capital market factors which branches out to a predicted value

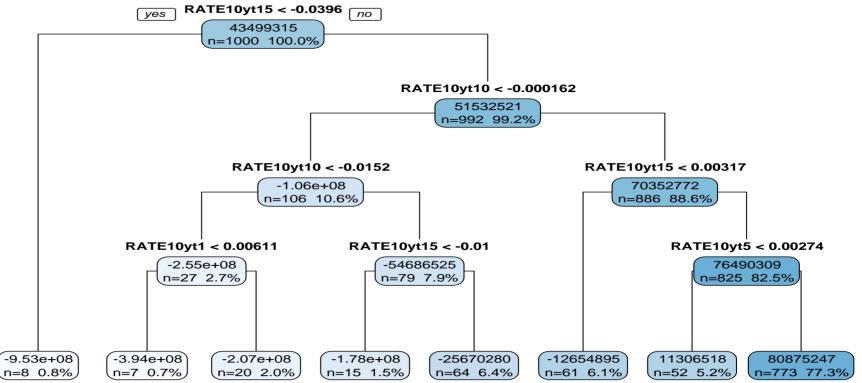




Method:rpart, R² (in sample) = 77.16%

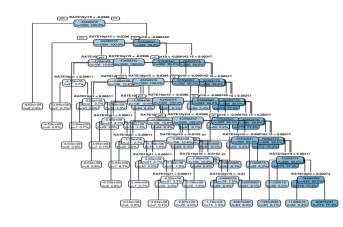
Decision trees are quite flexible but weak

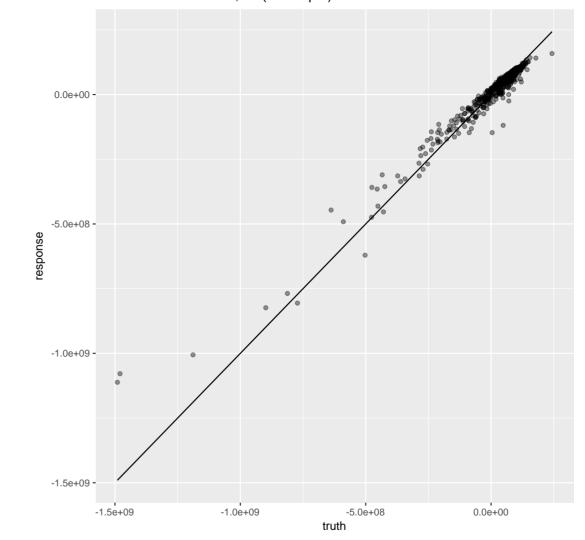
- Decision trees are generated very fast
- Typically not too complex (binary splits and few leaves)
- Are readable for a human



Random Forest

- Random = Trees based on random subsets of features and data
- Forest = Many trees (ensamble)
- Prediction of a Random Forest is average of predictions of the individual trees



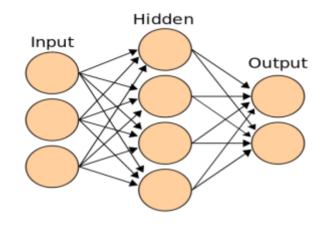


Method:randomForest, R² (in sample) = 95.28%

Neuronal network

Structured data processing

- Input layer has nodes (neurons) for each feature at each time step
- Output layers represents prediction
- Hidden layers react to patterns in the input
 - Exact pattern cannot be prescribed
 - Number of hidden layers determines predictive power → deep neural networks

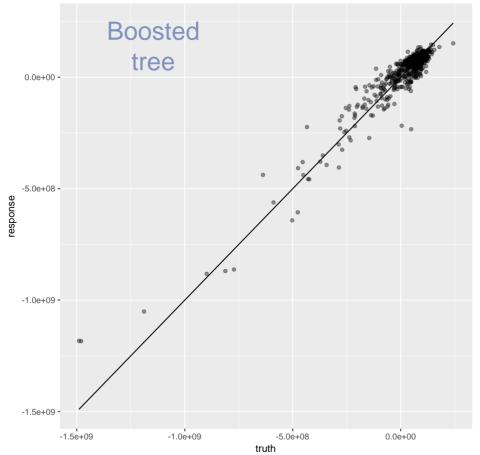


0.0e+00 --5.0e+08 · response -1.0e+09 --1.5e+09 -1.0e+09 -1.5e+09 -5.0e+08 0.0e+00 truth

Method:brnn, R² (in sample) = 85.98%

Boosting + Bagging

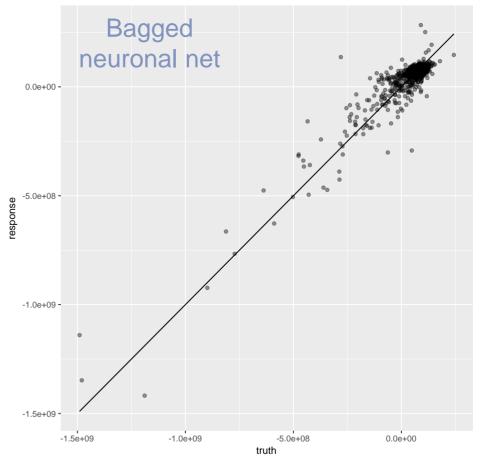
Boosting (forward stagewise modelling)



Method:blackboost, R² (in sample) = 91.3%

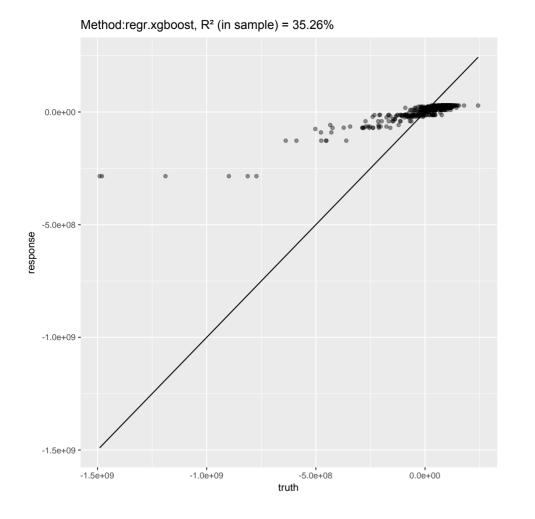
Bagging (Subsampling)

Method:brnn.bagged, R² (in sample) = 86.99%



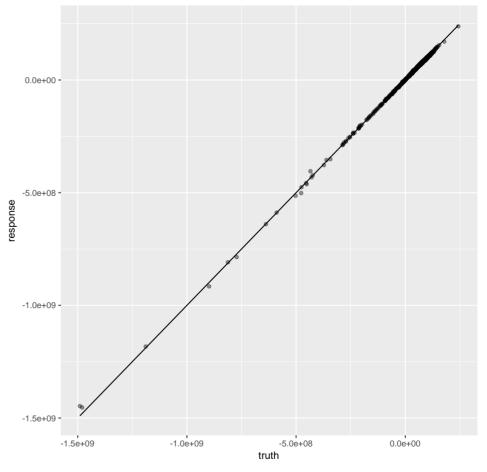
Hyper parameter tuning

Without tuning



With tuning

Method:regr.xgboost, R² (in sample) = 99.95%



Machine learning is not complicated

#1. Define data

mydata = CF-Model-Output-Data combined with Scenario Information

#2. Define tasks

tasks = list(makeRegrTask(data= mydata, target=,,PVFP"),...)

#3. Define methods

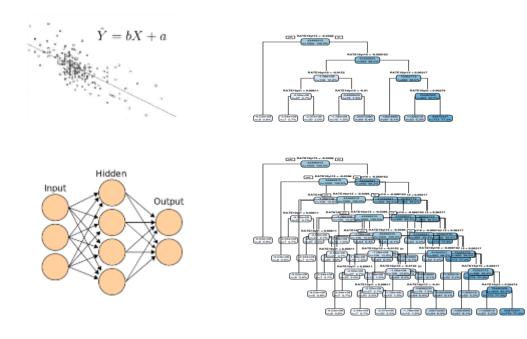
learners = list(makeLearner("regr.rpart"), ...)

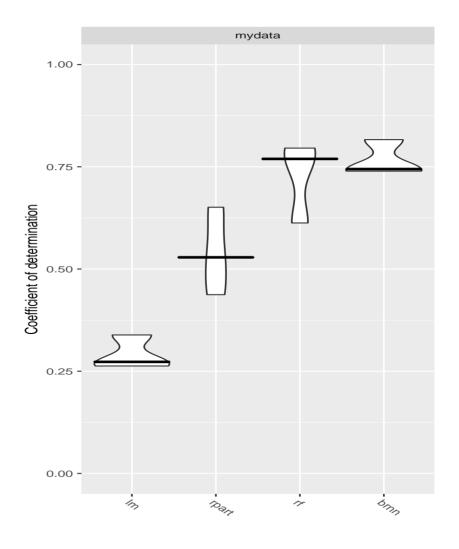
#4. Make the analysis (combine all tasks with all methods, do cross validation, compare e.g. MSE, MAPE, R^2,...) (bmr = benchmark(learners, tasks, cv10, measure= list(mse, mape, rsq)))

	task.id	learner.id	mse.test.mean	mape.test.mean	rsq.test.mean
1	mydata	lm	1.183934e+16	0.9909817	0.2960641
2	mydata	rpart	6.879358e+15	1.1763703	0.6037440
3	mydata	randomForest	4.693410e+15	0.8590164	0.7381586
4	mydata	brnn	3.775355e+15	0.8320113	0.7650239

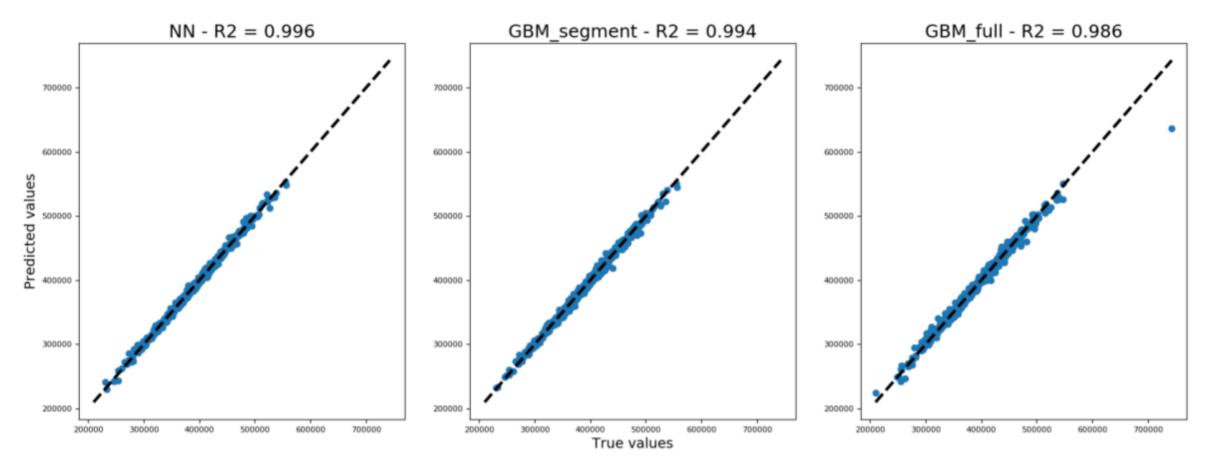
Comparison of approaches

- Modern ML models are often easier to use and yield as good or better results than classical methods
- Overfitting is an issue which has to be addressed (e.g. using cross-validation, bagging, randomisation)
- ML models are often black boxes

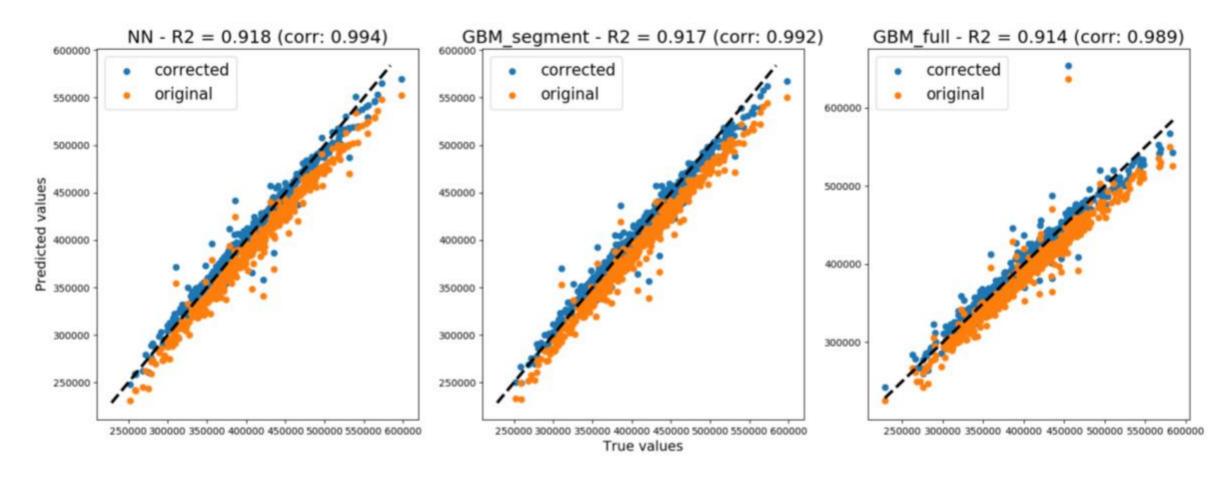




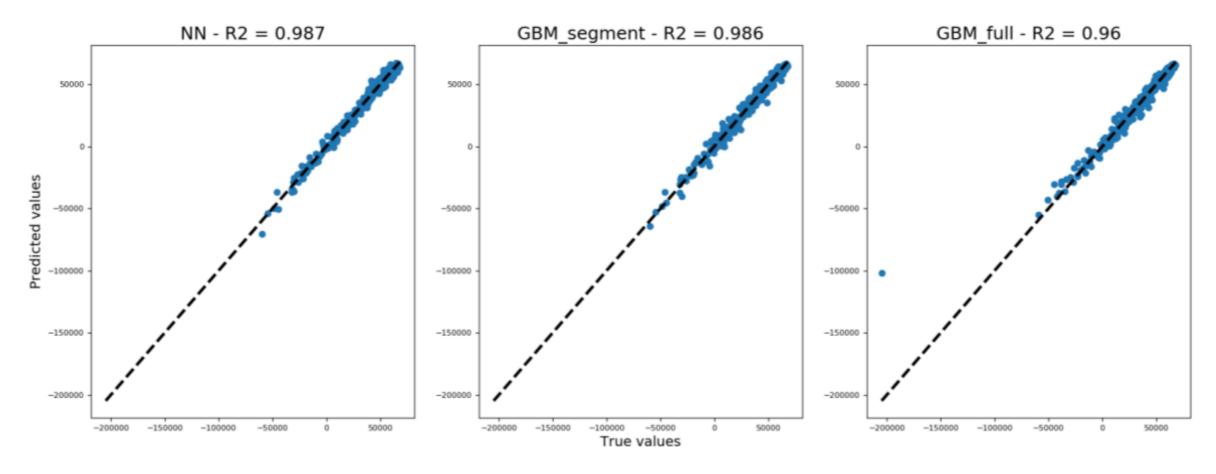
Fund 1: protection product



Fund 1: next quarter prediction

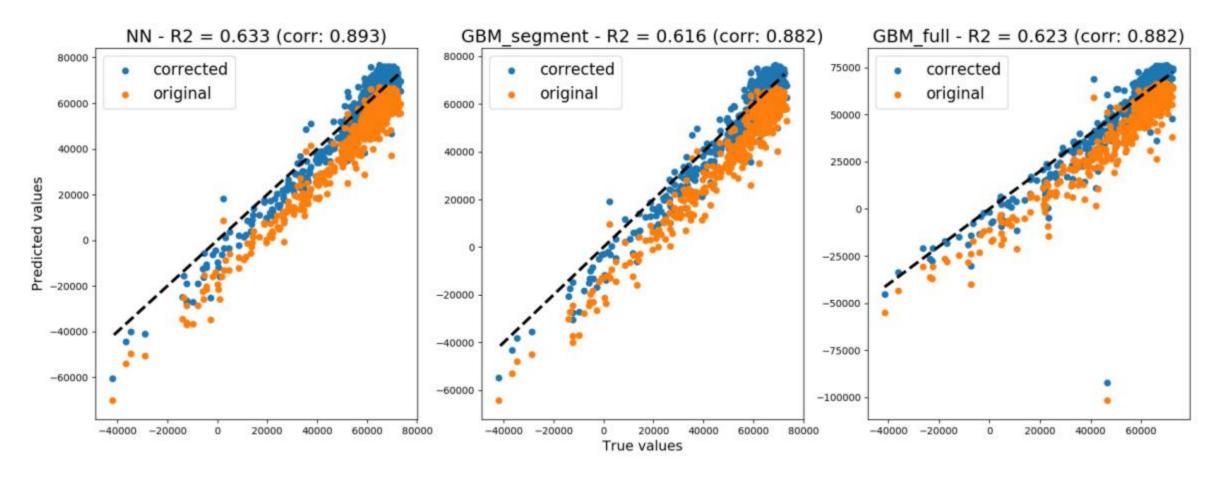


Fund 2: high guarantee product



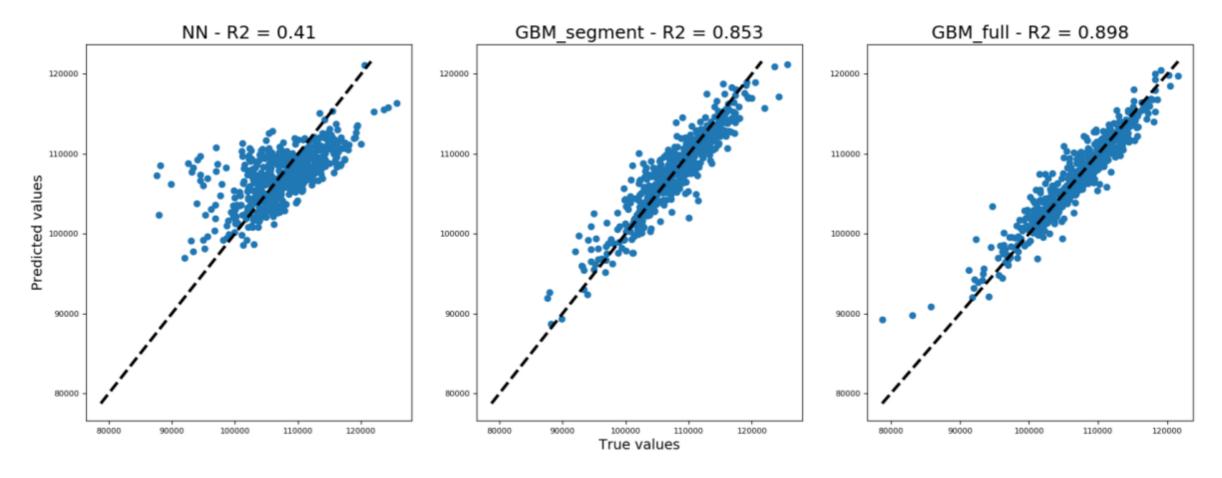
ΘA

Fund 2: next quarter prediction

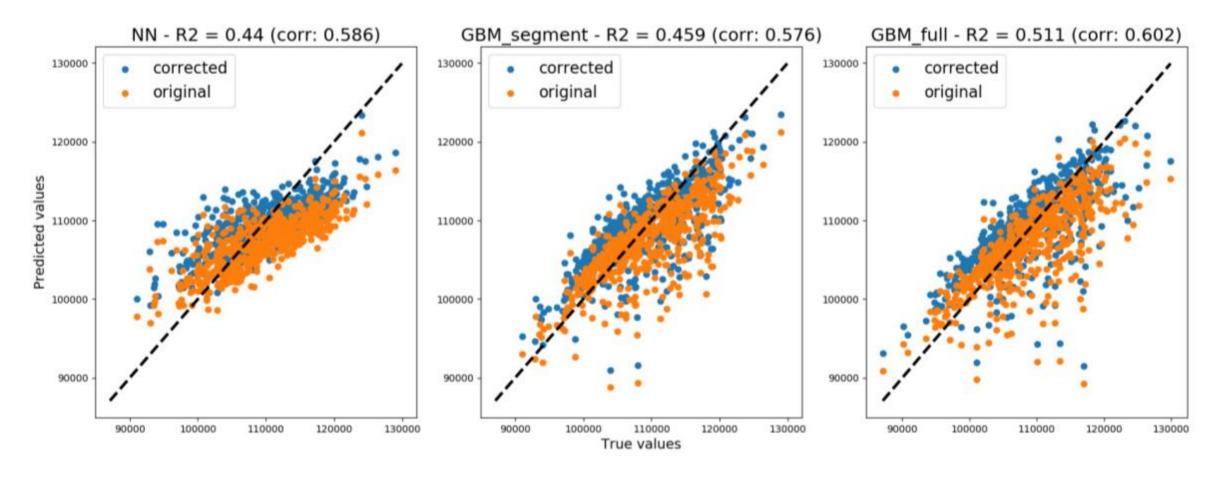


49

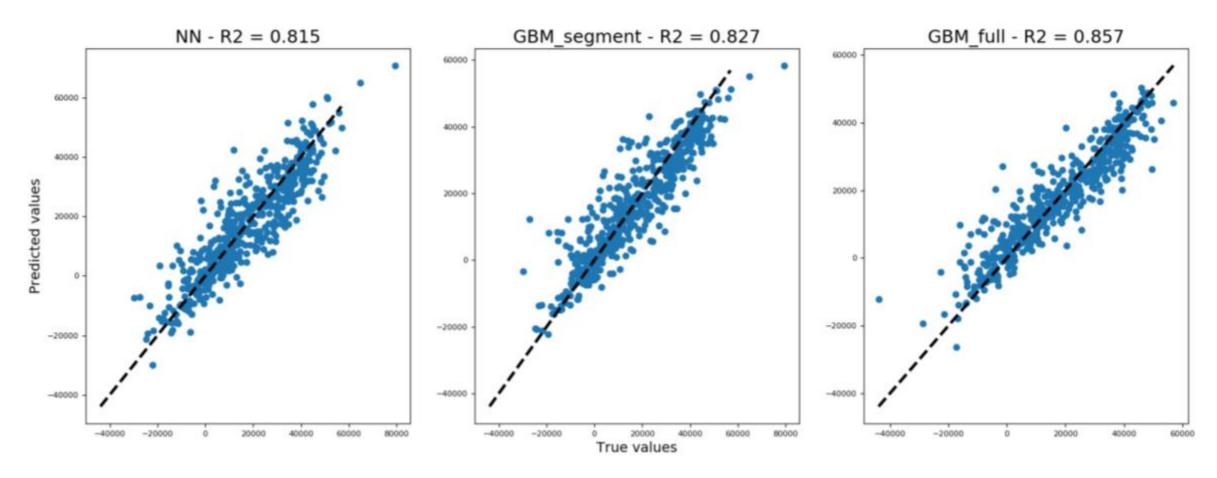
Fund 3: guarantee and fixed surrender value



Fund 3: next quarter prediction



Fund 4: equity focused product



Fund 4: next quarter prediction

