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Motivation

1. Want to predict mortality for multiple populations
* Human longevity continues to increase
* Mortality improvements in different populations are correlated

2. Want to account for the complex links between mortality and GDP (e.g., Hanewald, 2011,
Boonen & Li, 2017)

* Links between GDP and mortality over time
 Links between GDP and mortality across countries
» Short-term and long-term links between GDP and mortality

Applications:
* More accurate mortality predictions (esp. for small populations)
 Predictions of mortality scenarios and economic scenarios

» Longevity risk hedging



Summary

- Propose a new hybrid neural network approach for estimating and predicting the
mortality rates of multiple populations

» Uses a hybrid neural network structure: CNN-LSTM
« Convolutional neural network (CNN) — powerful in identifying patterns
 Long short-term memory (LSTM) — good at time-series predictions

 Finds linear and non-linear relationships between mortality and GDP per capita

 Predicts mortality rates and GDP per capita simultaneously for multiple populations



Neural network structures
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https://www.ibm.com/cloud/learn/recurrent-neural-networks

Neural network structures

Convolutional neural network
* Inspired by the organization of the visual cortex
* Three types of layers: convolutional layer, pooling layer, fully-connected (FC) layer

« Time series prediction (Wang et al., 2019); mortality rates (Perla et al., 2021)
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Neural network structures

Long short-term memory (LSTM)
« A type of recurrent neural network
« Can learn long-term dependency
* Input gate, forget gate: control the new information stored in the cell
» Output gate: decides the next hidden state

« Has become popular in actuarial science (Nigri et al., 2019; Richman & Withrich, 2019, Perla

et al., 2021; Lindholm and Palmborg, 2021) XJ 1
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Our proposed model

Input Laver

1D CNN with ReLU

Pooling Layer

LSTM layer

Output Layer

Convolutional layer:
produces new feature values
by convolution operation
between the raw input data

Pooling layer: produces a
lower dimension matrix

LSTM: learns long-term
dependencies



GDP per capita
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Data

Male and female mortality data from the Human Mortality Database (HMD)

Real GDP per capita data from the World Bank
Sample: 30 countries with at least ten years of mortality and GDP data before the year 2000

Training data: 1970-1999, test data: 2000-2018

Correlations between GDP and

Correlations between GDP and mortality over time mortality across countries (30-Male)
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Model comparison

Compare models with and without GDP based on their mean square error (MSE):

Models In sample loss (*10%)  Out-of-sample loss (*10™)
NNO 7.01 5.65
LSTMO 5.44 4.78
CNNO 5.25 4.29
CNN-LSTMO 5.36 4.22
LSTM 5.49 4.34
CNN 5.20 4.15

CNN-LSTM 5.09 3.98




Mortality
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Conclusion

We propose a hybrid neural network model for multi-population mortality prediction
* Uses a hybrid neural network structure: CNN + LSTM

« Makes better prediction of mortality by finding linear and non-linear relationships between
mortality and GDP
« Links between GDP and mortality over time, and across countries
« Links between past GDP and mortality (currently: 5 years)

* Predicts gross domestic product (GDP) per capita and mortality rates simultaneously for multiple
populations

* Next steps:
* Visualise & interpret links between GDP and mortality
» Add comparisons with Li-Lee and Boonen-Li models
* Analyse the impact of COVID-19 on mortality and GDP
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Thank yout

Contact:

Qigi Wang: wangqigi_ruc@outlook.com

Katja Hanewald: k.hanewald@unsw.edu.au

12


mailto:wangqiqi_ruc@outlook.com
mailto:k.hanewald@unsw.edu.au

References

Boonen, T. J., & Li, H. (2017). Modeling and forecasting mortality with economic growth: A multipopulation approach.
Demography, 54(5), 1921-1946.

Li, N., & Lee, R. (2005). Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method.
Demography, 42(3), 575-594.

Lindholm, M., & Palmborg, L. (2021). Efficient Use of Data for LSTM Mortality Forecasting. Available at SSRN 3805843.

Hanewald, K. (2011). Explaining mortality dynamics: The role of macroeconomic fluctuations and cause of death trends.
North American Actuarial Journal, 15(2), 290-314.

Nigri, A., Levantesi, S., & Marino, M. (2021). Life expectancy and lifespan disparity forecasting: a long short-term memory
approach. Scandinavian Actuarial Journal, 2021(2), 110-133.

Perla, F., Richman, R., Scognamiglio, S., & Withrich, M. V. (2021). Time-series forecasting of mortality rates using deep
learning. Scandinavian Actuarial Journal, 1-27.

Richman, R., & Wuthrich, M. V. (2019). Lee and Carter go machine learning: Recurrent neural networks. Available at SSRN
3441030.

Wang, K., Li, K., Zhou, L., Hu, Y., Cheng, Z., Liu, J., & Chen, C. (2019). Multiple convolutional neural networks for
multivariate time series prediction. Neurocomputing, 360, 107-119.

13



