

Multi-population mortality modeling with economic trends: A hybrid neural network approach

Qiqi Wang^{1,2}, Katja Hanewald^{2,3}, and Xiaojun Wang¹

¹ Renmin University of China, School of Statistics

² Australian Research Council Centre of Excellence in Population Ageing Research (CEPAR)

³ UNSW Sydney, School of Risk & Actuarial Studies

Motivation

- 1. Want to predict mortality for multiple populations
 - Human longevity continues to increase
 - Mortality improvements in different populations are correlated
- 2. Want to account for the **complex links between mortality and GDP** (e.g., Hanewald, 2011, Boonen & Li, 2017)
 - Links between GDP and mortality over time
 - Links between GDP and mortality across countries
 - Short-term and long-term links between GDP and mortality

Applications:

- More accurate mortality predictions (esp. for small populations)
- Predictions of mortality scenarios and economic scenarios
- Longevity risk hedging

Summary

- → Propose a new hybrid neural network approach for estimating and predicting the mortality rates of multiple populations
- Uses a hybrid neural network structure: CNN-LSTM
 - Convolutional neural network (CNN) powerful in identifying patterns
 - Long short-term memory (LSTM) good at time-series predictions
- Finds linear and non-linear relationships between mortality and GDP per capita
- Predicts mortality rates and GDP per capita simultaneously for multiple populations

Neural network structures

Feedforward neural network:

Connections between nodes do not form a cycle

Recurrent neural network:

Uses feedback connections to learn long-term dependencies

Source: https://www.ibm.com/cloud/learn/recurrent-neural-networks

Neural network structures

Convolutional neural network

- Inspired by the organization of the visual cortex
- Three types of layers: convolutional layer, pooling layer, fully-connected (FC) layer
- Time series prediction (Wang et al., 2019); mortality rates (Perla et al., 2021)

Neural network structures

Long short-term memory (LSTM)

- A type of recurrent neural network
- Can learn long-term dependency
 - Input gate, forget gate: control the new information stored in the cell
 - Output gate: decides the next hidden state

• Has become popular in actuarial science (Nigri et al., 2019; Richman & Wüthrich, 2019, Perla

et al., 2021; Lindholm and Palmborg, 2021)

Source: Graves et al. (2005)

Our proposed model

Convolutional layer:

produces new feature values by convolution operation between the raw input data

Pooling layer: produces a lower dimension matrix

LSTM: learns long-term dependencies

Data

- Male and female mortality data from the Human Mortality Database (HMD)
- Real GDP per capita data from the World Bank
- Sample: 30 countries with at least ten years of mortality and GDP data before the year 2000
- Training data: 1970-1999, test data: 2000-2018

Correlations between GDP and mortality over time

Correlations between GDP and mortality across countries (30-Male)

Model comparison

Compare models with and without GDP based on their mean square error (MSE):

Models	In sample loss (*10 ⁻⁴)	Out-of-sample loss (*10 ⁻⁴)
NN0	7.01	5.65
LSTM0	5.44	4.78
CNN0	5.25	4.29
CNN-LSTM0	5.36	4.22
LSTM	5.49	4.34
CNN	5.20	4.15
CNN-LSTM	5.09	3.98

Mortality rates estimation and prediction

Conclusion

We propose a hybrid neural network model for multi-population mortality prediction

- Uses a hybrid neural network structure: CNN + LSTM
- Makes better prediction of mortality by finding linear and non-linear relationships between mortality and GDP
 - Links between GDP and mortality over time, and across countries
 - Links between past GDP and mortality (currently: 5 years)
- Predicts gross domestic product (GDP) per capita and mortality rates simultaneously for multiple populations
- Next steps:
 - Visualise & interpret links between GDP and mortality
 - Add comparisons with Li-Lee and Boonen-Li models
 - Analyse the impact of COVID-19 on mortality and GDP

Thank you!

Contact:

Qiqi Wang: wangqiqi_ruc@outlook.com

Katja Hanewald: k.hanewald@unsw.edu.au

References

- Boonen, T. J., & Li, H. (2017). Modeling and forecasting mortality with economic growth: A multipopulation approach. *Demography*, 54(5), 1921-1946.
- Li, N., & Lee, R. (2005). Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. *Demography*, 42(3), 575-594.
- Lindholm, M., & Palmborg, L. (2021). Efficient Use of Data for LSTM Mortality Forecasting. Available at SSRN 3805843.
- Hanewald, K. (2011). Explaining mortality dynamics: The role of macroeconomic fluctuations and cause of death trends. *North American Actuarial Journal*, 15(2), 290-314.
- Nigri, A., Levantesi, S., & Marino, M. (2021). Life expectancy and lifespan disparity forecasting: a long short-term memory approach. *Scandinavian Actuarial Journal*, 2021(2), 110-133.
- Perla, F., Richman, R., Scognamiglio, S., & Wüthrich, M. V. (2021). Time-series forecasting of mortality rates using deep learning. *Scandinavian Actuarial Journal*, 1-27.
- Richman, R., & Wuthrich, M. V. (2019). Lee and Carter go machine learning: Recurrent neural networks. *Available at SSRN 3441030.*
- Wang, K., Li, K., Zhou, L., Hu, Y., Cheng, Z., Liu, J., & Chen, C. (2019). Multiple convolutional neural networks for multivariate time series prediction. *Neurocomputing*, 360, 107-119.

.