

Using Explainable AI for Ratings of German Life Insurers

<u>Holger Bartel</u>, RealRate Inc.

Mirko Kraft, Coburg University

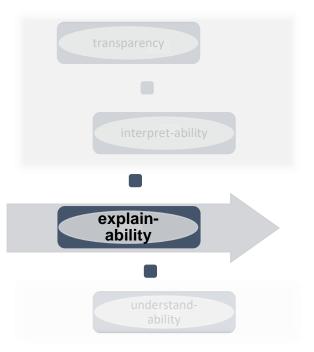
Jochen Leidner, Coburg University

EAA e-Conference on Data Science & Data Ethics

12 May 2022

INTRODUCTION & MOTIVATION

4 key principles of XAI^{1,2,3,4}



Sources:

- ¹ Arrieta, et al., 2020.
- ² Doshi-Velez, Kim, 2017.
- ³ Miller, 2019.
- ⁴ Vilone, Longo, 2020.

AI as a viable practical tool to facilitate decision-making (Lossos, Geschwill, Morelli, 2021).

The requirements in evaluation of companies (incl. insurance industry) are based on *4 key principles of XAI*.

 \rightarrow Ethical problems in this context include questions of the morality of automation in general, of fairness/justice and of transparency (Leidner, in prep.).

"Black Box" analysis model

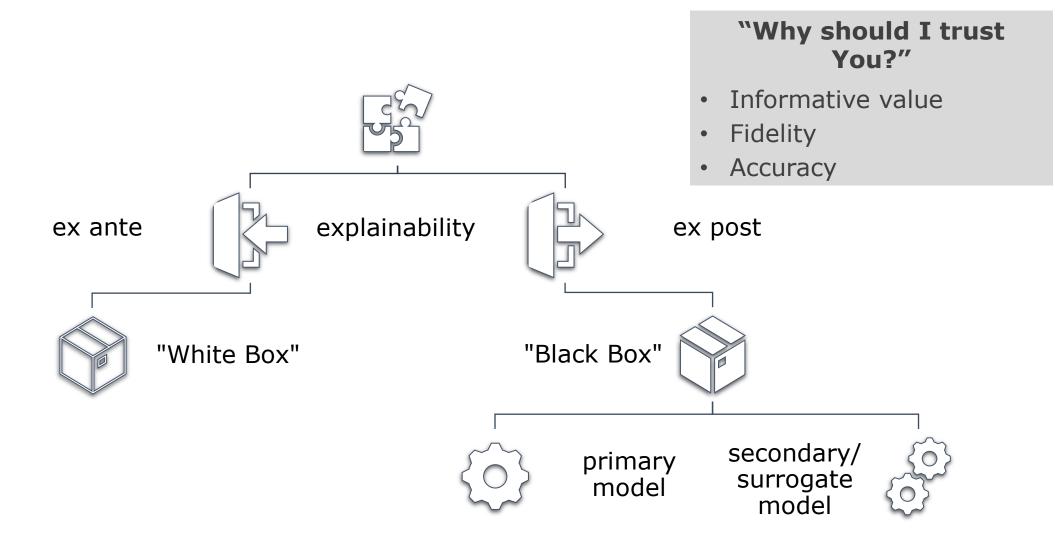
 \rightarrow currently provide the best predictions

Drawback \rightarrow explaining a black-box decision-making is extremely sophisticated

The goal \rightarrow to identify new approaches in creating machine learning models that provide high level of both accuracy and explainability.

EXPLAINABLE AI IN INSURANCE

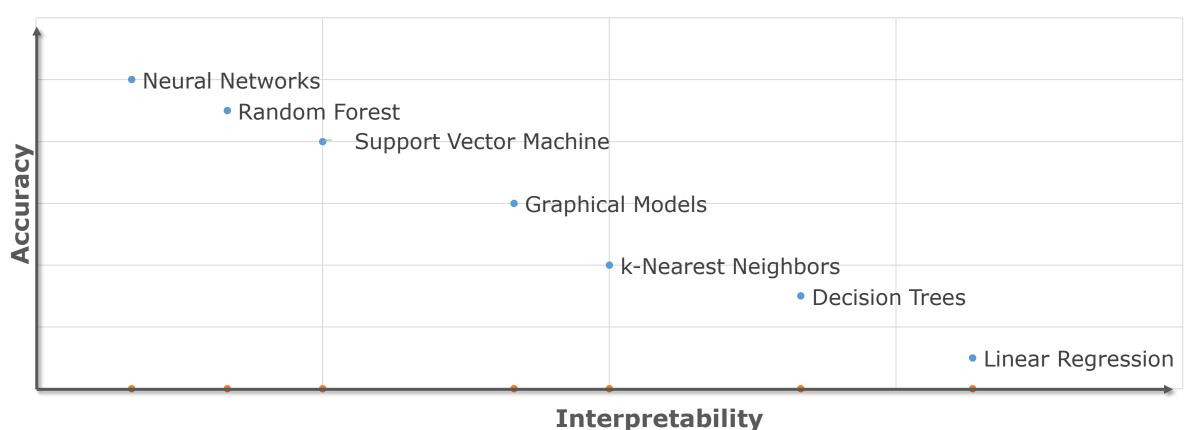
APPROACHES TO EXPLICABILITY



Data - Ethics - Actuary

TRADE-OFF BETWEEN INTERPRETABILITY & ACCURACY OF MACHINE LEARNING

TRADE-OFF BETWEEN INTERPRETABILITY & ACCURACY OF MACHINE LEARNING



Source: Dziugaite et al., 2020

• LIME technique (Local Interpretable Model-agnostic Explanations)

$$\xi(x) = \arg\min \mathcal{L}(f, g, \pi_x) + \omega(g)$$

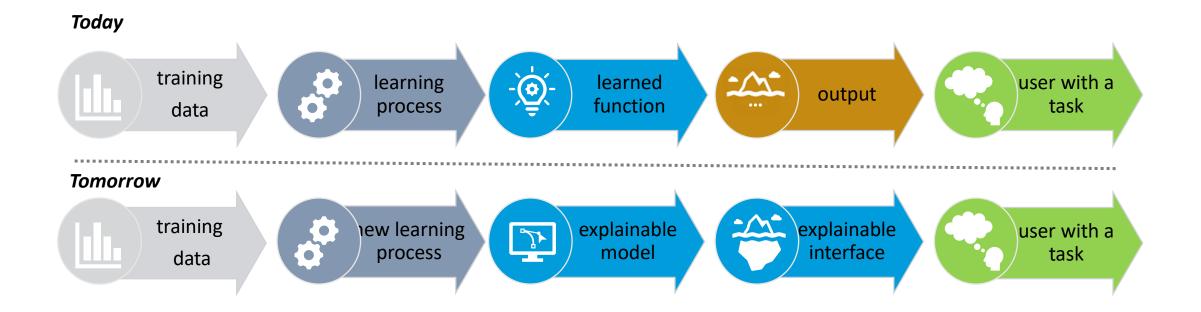
- Shapley values (Shapley 1951)
 game theory
- other methods

TAXONOMY FOR MODEL-AGNOSTIC METHODS

What to explain?

	_ !				
How to explain?			Global	Local	Data
		Profile	Partial Dependence Plot (PDP) Individual Conditional Expectation (ICE)	Ceteris Paribus Plot	
		Parts	Global Feature Importance Leave-One-Covariate-Out (LOCO)	SHARP Attribution Break-Down Attribution	Graphical Networks
		Distribution			Histogram Boxplot Barplot

Source: Biniecki and Biecek, 2021



Source: Woody, 2018

"PRINCIPLE OF TRANSPARENCY AND EXPLAINABILITY"

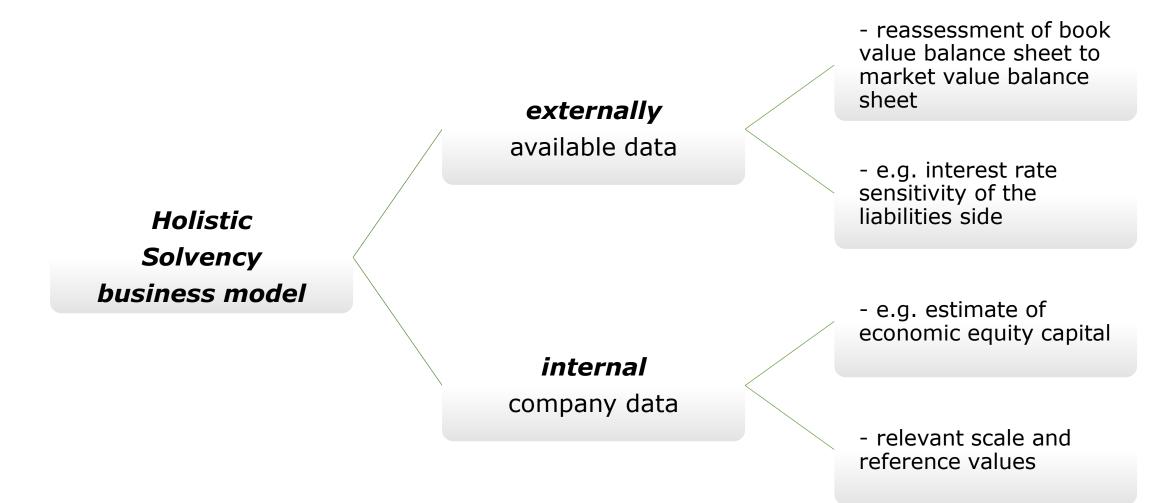
- "Insurance firms should adapt the types of explanations to specific AI use cases and to the recipient stakeholders.
- Insurance firms should strive to use explainable AI models, in particular in high-impact AI use cases, although, in certain cases, they may combine model explainability with other governance measures insofar as they ensure the accountability of firms, including enabling access to adequate redress mechanisms.
- Explanations should be meaningful and easy to understand in order to help stakeholders make informed decisions.
- Insurance firms should transparently communicate the data used in AI models to consumers and ensure that they are aware that they are interacting with an AI system, and its limitations."

Source: EIOPA, 2021, p. 40.

USE CASE OF RATINGS FOR GERMAN LIFE INSURERS

HOLISTIC SOLVENCY BUSINESS MODEL

A HYBRID RATING MODEL WITH EXPERT KNOWLEDGE



METHODOLOGICAL PECULIARITIES

A HYBRID RATING MODEL WITH EXPERT KNOWLEDGE

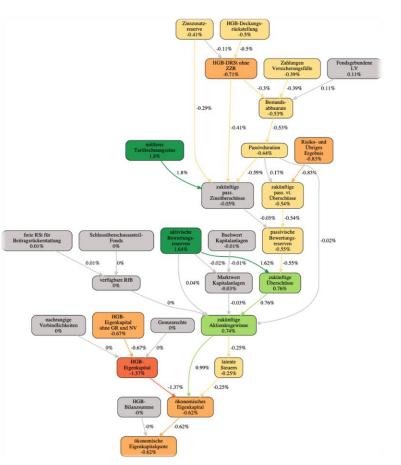
Methodological peculiarities

→in given *causal model*

structuredShallow Learning/Neural NetworkSmall Data

In contrast to typical Deep Learning approaches

- → each node/ each neuron is interpretable
- \rightarrow as it corresponds to a model variable.



Source: RealRate, Analysis of financial strengths of Allianz Life Insurer, Financial year 2020 EAA e-Conference on Data Science & Data Ethics | 12 May 2022 | Page 13

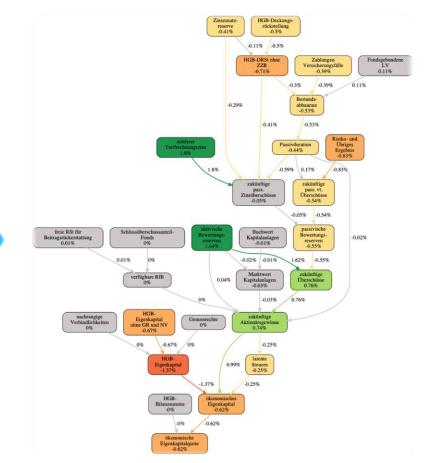
THE EXPLAINABLE CAUSAL GRAPH 1/6

OPTIMISATION AS A CLASSICAL, NON-LINEAR PROBLEM

Additional constraint makes a case peculiar, as certain nodes / neurons / variables are just not causally linked to each other.

Data - Ethics - Actuary

This was technically implemented as a structural neural network (SNN).



Source: RealRate, Analysis of financial strengths of Allianz Life Insurer, Financial year 2020

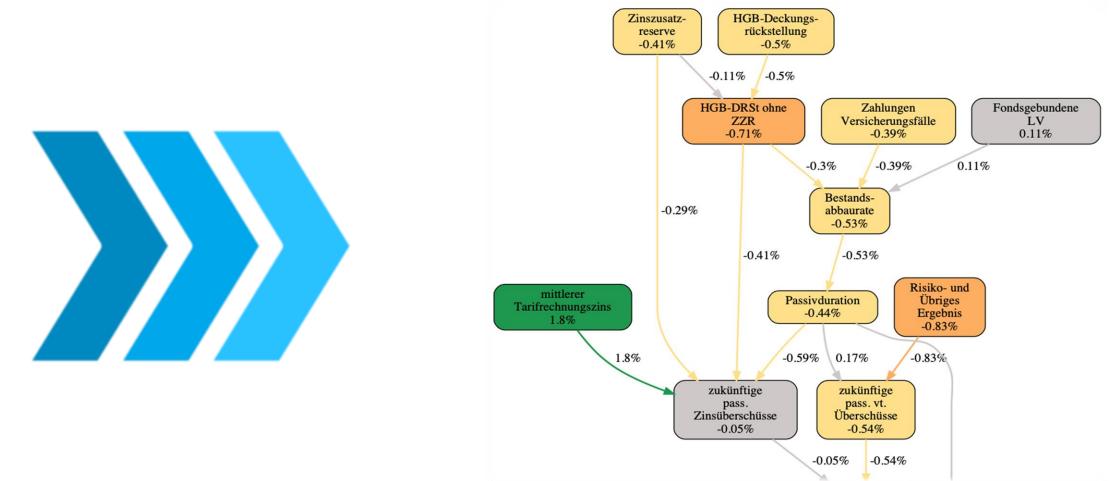
EAA e-Conference on Data Science & Data Ethics | 12 May 2022 | Page 14

THE EXPLAINABLE CAUSAL GRAPH 2/6

USE-CASE EXAMPLE

Future

Data - Ethics - Actuary

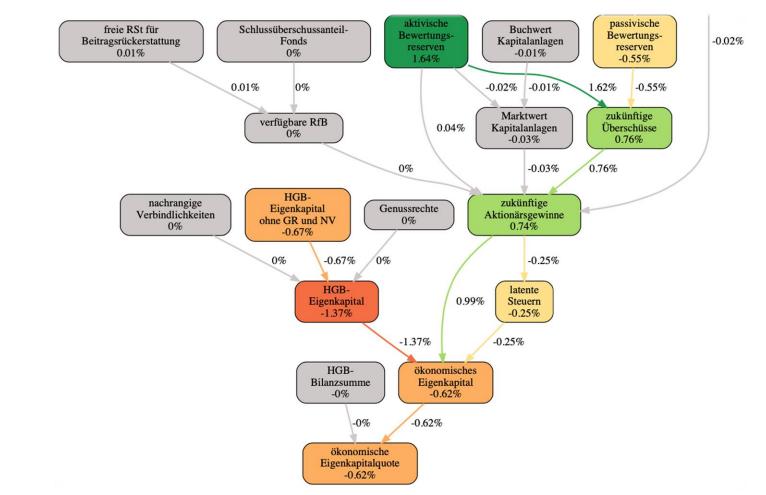


Source: RealRate, Analysis of financial strengths of Allianz Life Insurer, Financial year 2020

Putter and a second sec

THE EXPLAINABLE CAUSAL GRAPH 3/6

USE-CASE EXAMPLE



Source: RealRate, Analysis of financial strengths of Allianz Life Insurer, Financial year 2020

EAA e-Conference on Data Science & Data Ethics | 12 May 2022 | Page 16

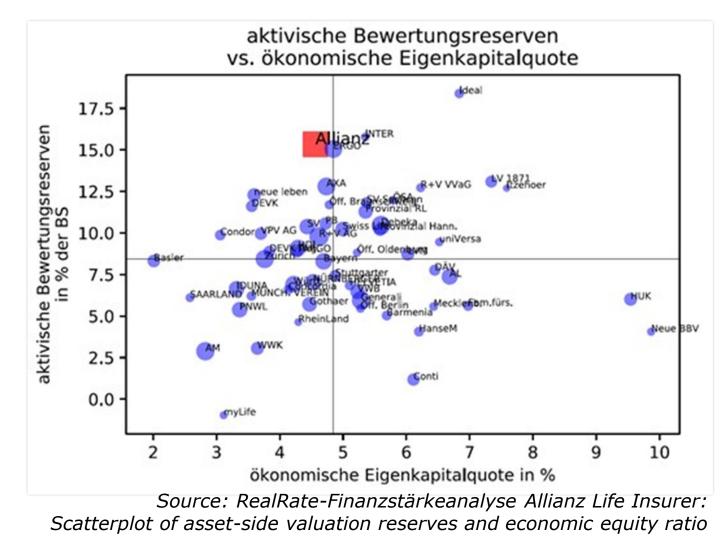
USE-CASE EXAMPLE

Causal structure is *the same* for all companies

Data - Ethics - Actuary

still

Quantification of individual effects *is specific* for each case



EAA e-Conference on Data Science & Data Ethics | 12 May 2022 | Page 17

THE EXPLAINABLE CAUSAL GRAPH 5/6

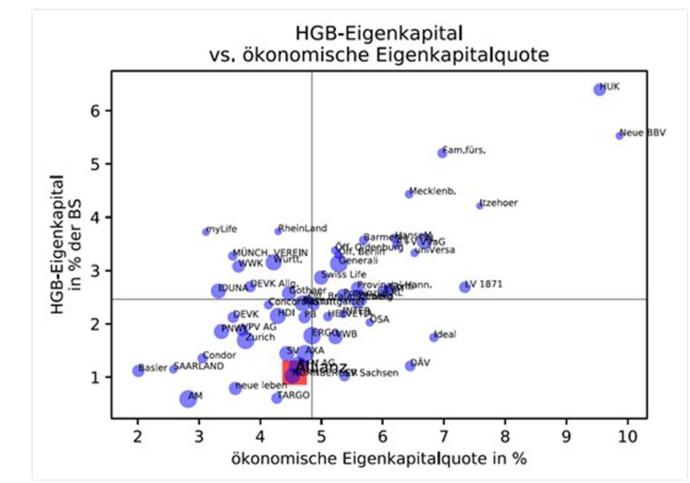
USE-CASE EXAMPLE

In an overall market overview:

Data - Ethics - Actuary

it is especially *suitable for a benchmark*

or peer group analysis.



Source: RealRate-Finanzstärkeanalyse Allianz Life Insurer: Scatterplot of HGB equity and economic equity ratio

THE EXPLAINABLE CAUSAL GRAPH 6/6

USE-CASE EXAMPLE

Typical modelling cycle of a hybrid model approach:

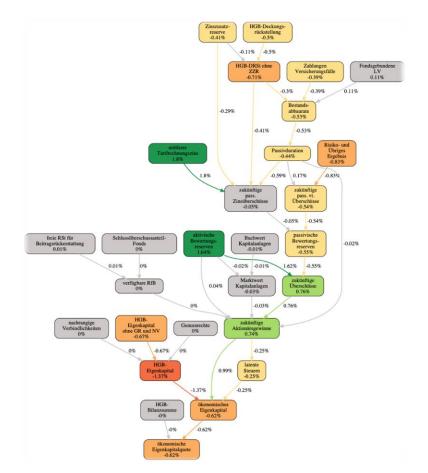
Data - Ethics - Actuary

- •Define input
- Define causal structure
- Machine learning/ estimation
- •Evaluation
- Model modification

The methodology facilitates model validation and brings the following advantages:

- Explainability
- Transparency

- Small Data vs Big Data
 - Speed & Scalability



Source: RealRate, Analysis of financial strengths of Allianz Life Insurer, Financial year 2020

EAA e-Conference on Data Science & Data Ethics | 12 May 2022 | Page 19

SUMMARY, CONCLUSION & FUTURE WORK

EXPLAINABILITY, TRANSPARENCY & BUSINESS MODEL

SUMMARY, CONCLUSION & FUTURE WORK

Explainable AI & ethic implications in economic sense:

4 key principles of XAI \rightarrow insuring adherence to ethical principles \rightarrow Ratings & German Insurers.

Novel hybrid model & Interrelations derived form structure: more viable/ comprehensive/ traceable/ replicable approach

Future Work: much broader spectrum of practical application (incl. other industries/ countries/ entities, as well as micro- and macro scale goals & objectives)

EAA e-Conference on Data Science & Data Ethics | 12 May 2022 | Page 21

LITERATURE

Arrieta, A.B., et al.: Explainable artificial intelligence (XAI) (2020): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115. <u>https://doi.org/10.1016/j.inffus.2019.12.012</u>. http://www.sciencedirect.com/science/article/pii/ S1566253519308103 [07.04.2024].

Adadi, Amina und Mohammed Berrada (2018): Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI), IEEE Access 6, S. 52138-52160, DOI 10.1109/ACCESS.2018.2870052 [07.04.2024].

Baniecki, H., & Biecek, P. (2020). The grammar of interactive explanatory model analysis. arXiv preprint arXiv:2005.00497 [07.04.2024].

Bartel, Holger (2020a): Causal_Analysis – With an Application to Insurance Ratings <u>https://www.researchgate.net/publication/339091133</u> Causal Analysis - With an Application <u>to Insurance Ratings</u> [07.04.2024].

Bartel, Holger (2020b): Explainable Artificial Intelligence (XAI) in Ratings https://www.researchgate.net/publication/344992217_Explainable_Artificial_Intelligence_XAI_in_ Ratings [07.04.2024].

LITERATURE

Bartel, Holger (2020c): Causing: CAUSal Interpretation using Graphs https://www.researchgate.net/publication/341878489_Causing_CAUSal_INterpretation_using_Gr aphs [07.04.2022].

Breiman, Leo., Jerome H. Friedman, Richard A. Olshen und Charles J. Stone (1984) Classification and regression trees, Monterey, CA, USA: Wadsworth & Brooks/Cole.

Burkart, Nadia und Marco F. Huber (2021): A Survey on the Explainability of Supervised Machine Learning, Journal of Artificial Intelligence Research 70: 245-317, DOI: 10.1613/jair.1.12228

Cohen, William W. (1995): Fast Effective Rule Induction, Proc. 12th Int. Conf. Machine Learning (ICML).

EIOPA (2021): Artificial intelligence governance principles: towards ethical and trustworthy artificial intelligence in the European insurance sector. A report from EIOPA's Consultative Expert Group on Digital Ethics in insurance. <u>https://www.eiopa.europa.eu/document-library/report/artificial-intelligence-governance-principles-towards-ethical-and_en</u> [07.04.2022].

LITERATURE

Europäische Kommission (2020): Weißbuch zur Künstlichen Intelligenz – Ein europäisches Konzept für Exzellenz und Vertrauen, Brüssel. https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_de.pdf [07.04.2022].

Doshi-Velez, F., Kim, B. (2017): Towardsarigorousscienceofinterpretablemachinelearn- ing. arXiv preprint arXiv: 1702.08608 [07.04.2022].

Dziugaite, G. K., Ben-David, S., & Roy, D. M. (2020). Enforcing Interpretability and its Statistical Impacts: Trade-offs between Accuracy and Interpretability. arXiv preprint arXiv:2010.13764 [07.04.2022].

James, Gareth, Witten, Daniela, Hastie, Trevor und Robert Tibshirani (2017): An Introduction to Statistical Learning: with Applications in R, New York, NY, USA: Springer.

Leidner, Jochen L. (2021): A Survey of Ethical Problems of Artificial Intelligence. (in Vorbereitung)

Lossos, Christian, Simon Geschwill und Frank Morelli (2021): Offenheit durch XAI bei MLunterstützten Entscheidungen: Ein Baustein zur Optimierung von Entscheidungen im Unternehmen? HMD Praxis der Wirtschaftsinformatik 58:303–320.

LITERATURE

Lundberg, Scott M. and Su-In Lee (2017): A unified approach to interpreting model predictions, Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS). Red Hook, NY, USA, 4768–4777.

Miller, T. (2019): Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38. https://doi.org/10.1016/j.artint.2018.07.007. https://www.sciencedirect.com/ science/article/pii/S0004370218305988 [07.04.2022].

Quinlan, John R. (1986). Induction of Decision Trees, Machine Learning 1(1): 81-106.

Sellhorn, Thorsten (2020): Machine Learning und empirische Rechnungslegungsforschung: Einige Erkenntnisse und offene Fragen, Schmalenbachs Z. betriebswirtsch. Forsch. 72, 49–69, DOI 10.1007/s41471-020-00086-1.

Shapley, Lloyd S. (1951) Notes on the n-Person Game - II: The Value of an n-Person Game, Technical Report RM-670, Santa Monica, CA, USA: RAND Corporation.

Vilone, G., Longo, L. (2020): Explainable artificial intelligence: a systematic review. arXiv preprint arXiv:2006.00093 [07.04.2022].

Woody, A. (2018): Opening Up Black Boxes with Explainable AI. Datami. https://www.datanami.com/2018/05/30/opening-up-black-boxes-with-explainable-ai/ [07.04.2022]. Dr. rer. pol., DAV actuary, management consultant and expert advisor

- Academic studies: graduate economist, graduate business
 instructor
- PhD in the Research Training Group of the Humboldt University and the Free University of Berlin in the field of multivariate time series analysis
- Founder and CEO of Fintech Startups
- As a founder of the rating company RealRate (Santa Clara and Berlin) has been elected as one of the top InsurTech CEOs.

Goal/objectives:

 bringing modern statistical methods to the market in an application-oriented and transparent way

Key topics:

- Risk management
- Rating
- Artificial Intelligence

ABOUT ME

Holger Bartel

RealRate GmbH RealRate GmbH Cecilienstr. 14, 12307 Berlin, GERMANY

- Academic studies: Graduate in mathematics at the Heinrich Heine University Düsseldorf
- Research assistant and PhD in Controlling at the Westphalian Wilhelms University of Münster
- **Professorship** for Insurance Management at the Coburg University of Applied Sciences and Arts (since 2012)
- 2006-2021 Active at GDV in the area of Solvency II/risk management

Goal/objectives:

- Teaching and research in controlling and risk management
- Studying the ethical issues in the application of AI methods in the insurance sector

Key topics:

- Controlling and risk management
- Insurance superviison (Solvency II)
- Digitalisation and telematics
- Health promotion and insurance

ABOUT ME

Mirko Kraft

Coburg University of Applied Sciences and Arts Department of Business and Economics

- Academic studies: Computational Linguistics, English and Computer Science at FAU Erlangen-Nuremberg and Lancaster University, Computer Speech, Text and Internet Technology at Cambridge University
- **PhD** in Computer Science, University of Edinburgh
- Professorship for explainable and responsible artificial intelligence in insurance at Coburg University of Applied Sciences and Arts
- **Visiting Professor** of Data Analyticsat the Computer Science Department of the University of Sheffield

Goal/objectives:

- Academic work and research on controlling and risk
 management
- Researching the ethical issues in the application of AI methods in the insurance sector

Key topics:

- natural language processing (NLP) / computational linguistics
- Information Retrieval (IR)
- applied machine learning (ML)
- Language and Text Technologies Applications

ABOUT ME

Jochen Leidner

Coburg University of Applied Sciences and Arts Department of Business and Economics

Thank you very much for your attention

EAA e-Conference on Data Science & Data Ethics

12 May 2022