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APPROACHES TO EXPLAINABILITY

AI as a viable practical tool to facilitate decision-making
(Lossos, Geschwill, Morelli, 2021).

The requirements in evaluation of companies (incl. insurance 
industry) are based on 4 key principles of XAI.

→ Ethical problems in this context include questions of the morality 
of automation in general, of fairness/justice and of transparency 
(Leidner, in prep.).

“Black Box“ analysis model 

→ currently provide the best predictions

Drawback → explaining a black-box decision-making is extremely 
sophisticated

4 key principles of XAI1,2,3,4

Sources:
1 Arrieta, et al., 2020.
2 Doshi-Velez, Kim, 2017.
3 Miller, 2019.
4 Vilone, Longo, 2020.
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The goal → to identify new approaches in creating machine
learning models that provide high level of both accuracy and
explainability.
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explainabilityex ante

"White Box"

ex post

"Black Box"

primary 
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secondary/ 
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APPROACHES TO EXPLICABILITY

“Why should I trust 
You?”

• Informative value

• Fidelity

• Accuracy
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TRADE-OFF BETWEEN INTERPRETABILITY & ACCURACY OF MACHINE 
LEARNING

TRADE-OFF BETWEEN INTERPRETABILITY & 
ACCURACY OF MACHINE LEARNING

Neural Networks

Random Forest

Support Vector Machine

Graphical Models

k-Nearest Neighbors

Decision Trees

Linear Regression
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Interpretability

Source: Dziugaite et al., 2020



EAA e-Conference on Data Science & Data Ethics | 12 May 2022 | Page 7

• LIME technique (Local Interpretable Model-agnostic Explanations)

• Shapley values (Shapley 1951)
- game theory

• other methods

CRITERIA FOR EXPLAINABLE AI (XAI)
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TAXONOMY FOR MODEL-AGNOSTIC METHODS

POST-HOC TOOLS

Global Local Data

Profile

Partial Dependence Plot
(PDP)

Individual Conditional Expectation
(ICE)

Ceteris Paribus Plot

Parts
Global Feature Importance
Leave-One-Covariate-Out

(LOCO)

SHARP Attribution
Break-Down Attribution

Graphical Networks

Distribution
Histogram

Boxplot
Barplot

Source: Biniecki and Biecek, 2021
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EXPLAINABILITY BY DESIGN

Source: Woody, 2018

…
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• “Insurance firms should adapt the types of explanations to specific AI 
use cases and to the recipient stakeholders. 

• Insurance firms should strive to use explainable AI models, in 
particular in high-impact AI use cases, although, in certain cases, they 
may combine model explainability with other governance measures 
insofar as they ensure the accountability of firms, including enabling 
access to adequate redress mechanisms. 

• Explanations should be meaningful and easy to understand in order to 
help stakeholders make informed decisions.

• Insurance firms should transparently communicate the data used in AI 
models to consumers and ensure that they are aware that they are 
interacting with an AI system, and its limitations.”

“PRINCIPLE OF TRANSPARENCY AND EXPLAINABILITY” 

XAI ON ETHICAL LEVEL

Source: EIOPA, 2021, p. 40.
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A HYBRID RATING MODEL WITH EXPERT KNOWLEDGE

HOLISTIC SOLVENCY BUSINESS MODEL

Holistic 

Solvency

business model

externally 

available data

- reassessment of book 
value balance sheet to 
market value balance 
sheet

- e.g. interest rate 
sensitivity of the 
liabilities side

internal 

company data

- e.g. estimate of 
economic equity capital

- relevant scale and 
reference values
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Methodological peculiarities

→in given causal model

In contrast to typical Deep Learning approaches

→ each node/ each neuron is interpretable 

→ as it corresponds to a model variable. 

A HYBRID RATING MODEL WITH EXPERT KNOWLEDGE

METHODOLOGICAL PECULIARITIES

Source: RealRate, Analysis of financial strengths 
of Allianz Life Insurer, Financial year 2020 

structured
Neural Network

Shallow Learning/ 
Small Data
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Additional constraint 
makes a case peculiar, as 
certain nodes / neurons / 
variables are just not 
causally linked to each 
other.

This was technically 
implemented as a 
structural neural network 
(SNN).

OPTIMISATION AS A CLASSICAL, NON-LINEAR PROBLEM

THE EXPLAINABLE CAUSAL GRAPH 1/6

Source: RealRate, Analysis of financial strengths 
of Allianz Life Insurer, Financial year 2020 
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USE-CASE EXAMPLE

THE EXPLAINABLE CAUSAL GRAPH 2/6

Source: RealRate, Analysis of financial strengths of Allianz Life Insurer, Financial year 2020 
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USE-CASE EXAMPLE

THE EXPLAINABLE CAUSAL GRAPH 3/6

Source: RealRate, Analysis of financial strengths of Allianz Life Insurer, Financial year 2020 
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Causal structure is the same 
for all companies

still

Quantification of individual 
effects is specific for each 
case

USE-CASE EXAMPLE

THE EXPLAINABLE CAUSAL GRAPH 4/6

Source: RealRate-Finanzstärkeanalyse Allianz Life Insurer: 
Scatterplot of asset-side valuation reserves and economic equity ratio
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In an overall market 
overview:

it is especially suitable for a 
benchmark 

or peer group analysis. 

USE-CASE EXAMPLE

THE EXPLAINABLE CAUSAL GRAPH 5/6

Source: RealRate-Finanzstärkeanalyse Allianz Life Insurer: 
Scatterplot of HGB equity and economic equity ratio
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Typical modelling cycle of a 
hybrid model approach:

•Define input

•Define causal structure

•Machine learning/ estimation

•Evaluation

•Model modification

USE-CASE EXAMPLE

THE EXPLAINABLE CAUSAL GRAPH 6/6

The methodology facilitates model validation and 
brings the following advantages:

• Explainability

• Transparency

• Small Data vs Big Data

• Speed & Scalability
Source: RealRate, Analysis of financial strengths 

of Allianz Life Insurer, Financial year 2020 
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SUMMARY, CONCLUSION & FUTURE WORK

EXPLAINABILITY, TRANSPARENCY & 
BUSINESS MODEL

Explainable AI & ethic implications in economic sense:

4 key principles of XAI → insuring adherence to ethical principles → Ratings & German Insurers.

Novel hybrid model & Interrelations derived form structure:

more viable/ comprehensive/ traceable/ replicable approach

Future Work: much broader spectrum of practical application
(incl. other industries/ countries/ entities, as well as micro- and macro scale goals & objectives)
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