


BELIEVING THE BOT – MODEL 
RISK IN THE ERA OF DEEP 
LEARNING
Ronald Richman

SA Taxi, Managing Head: Insurance Actuarial



INTRODUCTION

3

Presented by: 

Ronald Richman, SA Taxi, rrichman@sataxi.co.za

Joint work with:

Nicolai von Rummell, QED Actuaries & Consultants nicolai.von.rummell@qedact.com

Mario V. Wüthrich, ETH Zürich mario.wuethrich@math.ethz.ch

Paper:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3444833

mailto:rrichman@sataxi.co.za
mailto:nicolai.von.rummell@qedact.com
mailto:mario.wuethrich@math.ethz.ch
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3444833


AI APPLICATIONS ON THE RISE

4

Man from www.thispersondoesnotexist.com/

Mona Lisa from Samsung AI team

Text from https://talktotransformer.com/

Self- driving from NVIDIA blog

Cancer detection from Nature Medicine

An exciting part of the world of finance is insurance

I think we all know that the insurance industry is exciting. I see it everywhere - the airlines, the cars, most all the 
businesses in the world. The insurance industry can really drive the economic innovation.

But one area of insurance that I really want to see develop more is financial advice. It might be a private sector service but 
insurance companies are not really there anymore. In general we are not allowed to talk to clients about financial 
solutions - we need to find a new solution. It would be fun to see what a private sector insurance can deliver.



PITFALLS WHEN USING AI MODELS
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• Amazon recently scrapped its recruitment algorithm, that the company 

has been using since 2014

• Algorithm selected top candidates based on their resumés only

• Trained using past applications at Amazon introducing pro-male bias in 

training set

• Editing the algorithm could not ensure removal of bias 

• Therefore, the algorithm was scrapped



• From traditional modelling to deep learning

• Introduction to model risk management

• Model risk management for DL Models



HOW TO DEFINE A MODEL
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"a set of verifiable mathematical relationships or logical procedures which is used to represent
observed, measurable real-world phenomena, to communicate alternative hypotheses about the causes of the 
phenomena, and to predict future behaviour of the phenomena or the purpose of decision making".

Representation

Explanation

Prediction
Decision making

Real World

Model

Base Interpretation Purpose



ACTUARIAL MODELS: EXPLANATION OR 
PREDICTION?
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Build casual 
understanding

Make accurate 
predictions

Goal

Consequences

• Favour techniques that are 
interpretable

• Require unbiased models
• Consider strength of inferences

• Use complex algorithms

• Accept bias if it increases 
predictive accuracy

• Quantify predictive accuracy

Common actuarial techniques usually applied for predictive purposes:
• GLMs

• Chain-Ladder and Bornhuetter-Ferguson
• Lee-Carter



FORMAL DEFINITION OF A MODEL
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𝑀 𝑋; 𝑇; 𝑆 𝐴, 𝐸 ; Θ = ො𝑦

X Matrix of known variables
S Specification of class of 

algorithms A and explicit model 
definition E

Unknown variable ො𝑦

T set of functions defining new 
variables X’

Θ Set of parameters



PARADIGM OF TRADITIONAL ACTUARIAL 
MODELLING
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T often specified manually:
- For most variables select 𝒇𝒊 asidentify or step functions
- Multiplying known variables to create interaction effects 
important in pricing

𝑴 𝑿;𝑻;𝜷𝒊𝒇𝒊(𝒙𝒊) ; 𝜣 = ෝ𝒚

X usually relatively simple and might be 
in the region of 50 variables or fewer

Class of algorithms is usually linear (although 
good alternatives, such as GAMS, exist)
Model specification is choosing known 
variables for X’

Model fit by minimizing loss function derived from error 
distribution of predicted variable ෝ𝒚 (i.e. stochastic data 
generating process specified))
Derives a set of model parameters 𝜷𝒊 (no casual 
parameters because confounders not usually assessed)

Quality tested using various 
techniques but usually not predictive 
performance



MOVING TO MACHINE LEARNING MODELS
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Characteristics of ML models

• Two most successful classes (gradient boosted trees, neural 
networks)

• Usually combined with extensive feature engineering involving 
complicated functions in T

• Structure of model determined by model class A
• No explicit model specification E
• Stochastic data generating process usually not considered – model 

fit using objective functions such as MSE

Differences from traditional actuarial modelling

• ML algorithms may produce highly non-linear models
• Interaction of multiple variables via feature engineering
• => Higher complexity and less transparency
• Many different models may achieve similar performance i.t.o. loss 

function but produce very different policy level results
• May produce high quality predictions at policy level but be biased 

at portfolio level
• Since models may involve random processes, results develop a 

dependency on seed

No unique best model due to under-determination of model (insufficiently specified loss function)

𝑀 𝑋; 𝑇; 𝑆 𝐴, ෨𝐸 ; Θ = ො𝑦



NEUTRAL NETWORKS AND DEEP LEARNING

12

Relevance for actuarial modelling

1. Are actuarial data complex? Relatively few data points collected for each policy
2. Many years of collective professional and institutional experience in modelling 

techniques

A. Techniques for large-scale actuarial problems not well developed
B. Complex data becoming more commonplace – telematics/wearables/individual claims
C. New deep learning techniques shown to outperform traditional techniques relatively 

easily

𝑀 𝑋; ෨𝑇; 𝑆 𝐴, ෨𝐸 ; Θ = ො𝑦

Complexity Difficult to choose most relevant features in complex problems (high-dimensional data or large-scale problems)

1

Effort Requires substantial time spent on a problem by suitably qualified people

2

Expert Knowledge Depends on a body of expert knowledge on how to tackle problems

3
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REPRESENTATION LEARNING - EXAMPLES
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Cities & Capitals – Mikolov et al (2013)

Sentence embedding – Sutskever (2014)

Filters & Activations – Zeilier & Fergus (2013)



ACTUARIAL EXAMPLES OF DL
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Pricing Reserving Telematics
Mortality 

Forecasting

Quantitative Risk

Management

Feed-forward

Nets

• Ferrario, Noll and Wüthrich 

(2018)

• Noll, Salzmann and 

Wüthrich (2018)

• Rossouw and Richman 

(2019)

• Wüthrich and Buser (2018)

• Castellani, Fiore, Marino et 

al. (2018)

• Doyle and Groendyke (2018)

• Gabrielli and Wüthrich (2018)

• Hejazi and Jackson (2016, 

2017)

• Kuo (2019)

• Wüthrich (2018)

• Zarkadoulas (2017)

• Gao and Wüthrich 

(2017)

• Gao, Meng and 

Wüthrich (2018)

• Gao, Wüthrich and 

Yang (2018)

• Castellani, Fiore, 

Marino et al. 

(2018)

• Hejazi and 

Jackson (2016, 

2017)

Convolutional 

Neural Nets

• Gao and Wüthrich 

(2019)

Recurrent Neural 

Nets

• Kuo (2018a, 2018b) • Nigri, Levantesi, 

Marino et al. 

(2019)

Embedding 

Layers

• Richman (2018)

• Schelldorfer and Wüthrich 

(2019)

• Wüthrich and Merz (2019)

• Gabrielli, Richman and 

Wüthrich (2018)

• Gabrielli (2019)

• Poon (2019)

• Richman and 

Wüthrich (2018)

Autoencoders

• Richman (2018) • Hainaut (2018)

• Richman (2018)



SUMMARY
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• Linear model specification, for fi identity (GLM), fi spline 
function (GAM)

• 𝛽𝑖 regression parameters
𝑀 𝑋; 𝑇;𝛽𝑖𝑓𝑖(𝑥𝑖) ; Θ = ො𝑦

• Implicit Specification of the model ෨𝐸 by a class of 
algorithms A𝑀 𝑋;𝑇; 𝑆 𝐴, ෨𝐸 ;Θ = ො𝑦

• Representation Learning: Implicit Specification of 
functions ෨𝑇 to derive features X’

• Explicit use of loss function L(y, ො𝑦) to measure predictive 
accuracy

𝑀 𝑋; ෨𝑇; 𝑆 𝐴, ෨𝐸 ; Θ = ො𝑦

Traditional 
Actuarial

Machine Learning

Deep 
Learning



ASPECTS OF A TYPICAL MODELLING PROCESS

These steps are a simplified representation of a modelling process

Design Choosing all the defined parts of a Model M

1

Calibration Determination of parameters 𝜃, depending of Algorithms A and Loss function

2

Validation Assessing model accuracy, robustness and suitability for decision making

3

Implementation Technical configuration and set-up of model on suitable platform

4

Operation Running the model and producing of model predictions ො𝑦

5
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• From traditional modelling to deep learning

• Introduction to model risk management

• Model risk management for DL Models



SOME EXAMPLES OF MODEL RISK1

1: IFoA Model Risk Working Party (2015): Examples taken from the paper

LTCM
Hedge Fund

• In 1998 LTCM was bailed out by the Federal Reserve with 
$3.6bn to prevent a chain reaction in the financial system

• Before the LTCM adopted aggressive strategy to maintain 
high returns for their clients

• This strategy included merger arbitrage with small margins 
and more and more highly leveraged positions

• In 1998 Russia effectively defaulted on its bonds and 
markets fell by 35% (Europe) and 20% (US)

• LTCM lost $4.4bn of $4.7bn of its capital in less than a year 

JP Morgan
London Whale

• Since 2010 the CIO of JPM bought synthetic CDS derivates to 
protect the bank against economic downturn (SCP Portfolio)

• While intended as a protection, the SCP portfolio became a 
speculative investment and included short-positions that 
served as a source of profits betting on an upturn of the 
markets  

• Investments in SCP increased to £157bn in early 2012
• Existing risk management tools highlighted the risk but 

instead of reducing the risk, JPM changed the assessment 
method including a spreadsheet error

• In 2012 European sovereign debt crisis led to losses of £6bn

18



WHAT IS MODEL RISK?

“the potential loss an institution may incur, as a consequence of decisions that could be principally based on the 
output of internal models, due to errors in the development, implementation or use of such models"

ImpactEventCause

Errors in the development, 
implementation or use of 

models

Potential loss an institution 
may incur

Decisions that could be principally 
based on the output of internal 

models

19



MODEL RISK CLASSIFICATION

Model Risk
𝑴 𝑿;𝑻; 𝑺 𝑨, 𝑬 ;𝜣 = ෝ𝒚

Structural Risk Operational Risk

Specification Risk S(A,E)

Parameter Risk Θ

Numerical and Simulation Errors

Data Risk

Decision Risk

Other process Risk

20



RISK MANAGEMENT PROCESS

Identification of existing 
models, model purpose 
(Model Inventory)

All forms of model risk assessment is 
possible. From qualitative (RAG), to semi-
qualitative (Frequency/Severity) to 
quantitative

Comparison of risk assessment to 
risk appetite, define management 
actions if risk is unacceptable

Tracking of management action and 
implementation of measures

Assess

Manage

Monitor

Report

Identify

21



CONTROLS FOR TRADITIONAL ACTUARIAL 
MODELS

Specification Risk:  
• Clear definition of the problem or business question the 

model is going to solve,
• Documentation and review of model specification
• Peer review of the model specification
• Governance (committee, minutes) to review model 

specification and decisions in model development

Parameter Risk:  
• Calculate confidence intervals, sensitivities and stress tests
• Reasonability checks on the input and output

Data Risk:  
• Assessment of the input data X to determine sufficient data 

quality i.e. clean and fit for purpose, 
• defined metrics and reporting formats to track data quality 

of the inputs
• Documentation and review of the manipulation or initial 

transformation T of the input data X

Decision Risk:  
• Testing of output results against defined criteria 
• Training/Communication for decision makers
• Identify areas of human intervention
• Documentation of board discussion on results, underlying 

assumptions and appropriateness
• Defining clear performance metrics to assess the predictive 

accuracy of the model

Structural Risk Operational Risk

22



• From traditional modelling to deep learning

• Introduction to model risk management

• Model risk management for DL Models



RECAP: FROM TRADITIONAL ACTUARIAL 
MODELLING TO DL

• Linear model specification, for fi identity (GLM), fi spline 
function (GAM)

• 𝛽𝑖 regression parameters
𝑀 𝑋; 𝑇;𝛽𝑖𝑓𝑖(𝑥𝑖) ; Θ = ො𝑦

• Implicit Specification of the model ෨𝐸 by a class of 
algorithms A𝑀 𝑋;𝑇; 𝑆 𝐴, ෨𝐸 ;Θ = ො𝑦

• Representation Learning: Implicit Specification of 
functions ෨𝑇 to derive features X’

• Explicit use of loss function L(y, ො𝑦) to measure predictive 
accuracy

𝑀 𝑋; ෨𝑇; 𝑆 𝐴, ෨𝐸 ; Θ = ො𝑦

Traditional 
Actuarial

Machine Learning

Deep 
Learning
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CONSEQUENCES OF IMPLICIT MODEL 
SPECIFICATION FOR ML MODELS1

Increased exposure to model risk for ML/DL models and additional controls required

• Develop expert knowledge on model architecture and 
heuristics to assess models

• Issue pertains to some traditional models as well

Being able to comprehend the model 
as a whole

• Inspect learned representations in last layer of the model

• Manual intervention and inclusion of prior knowledge is 
more difficult

All components of the model can be 
inspected and make sense

• Many techniques to mitigate risks of instability and 
consistency of DLM still to be developed

• Ensembling many models and use of toy models to test 
outcomes of DLM 

Transparency of the learning algorithm 
and corresponding techniques

1: Lipton (2016) defines framework for model interpretability to assess two basic questions: Transparency or “How does the model work?” and Post-hoc Interpretability or “What else can the model tell me?”
2: Some of the techniques used for DLM are transparent but the consequences of applying those techniques are not always fully understood.

Simulatability

Decomposability

Algorithmic 
Transparency2

25



POST-HOC INTERPRETABILITY OR WHAT ELSE 
CN THE MODEL TELL ME?

Many techniques exist for DL and are being developed (SHAP, 
LIME, local explanations etc.)

Extraction information relevant for 
decision making

Both traditional and DL models are equally amendable to post-hoc interpretation…
…but some assumptions within these methods are not suitable for actuarial modelling

Consider the MACQ method: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3809674

Post-hoc interpretability means applying expert knowledge to the model outcome through using various techniques like 
visualization, examination of examples etc. to assess quality of results for decision making

26
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CONSEQUENCES OF REPRESENTATION 
LEARNING: BIAS

Models might learn a proxy for factors 
that are illegal. Example – learning 

gender on the basis of motor vehicle 
utilization.

Representation learning may lead 
to models exhibiting unwanted 

biases

Data may contain biases that models 
may learn to reproduce accurately. 

Example – Amazon recruitment model.

Countering bias in Deep Learning models

• Companies should formally define list 
of unethical/illegal/unwanted biases 
for the organisation

• Explicitly test representations/output 
against those biases or close proxies (if 
possible)

• Build two models –including and 
excluding factors representing 
unwanted bias and test the differences

• Explicitly counter biases (if possible) 
using loss function that enforce 
equality or build another model to 
remove the effects of bias

• Another way is to apply the 
Discrimination Free Insurance Pricing 
method

27



UNINTENDED CONSEQUENCES OF 
REPRESENTATION LEARNING

Deep learning yields models that are highly adapted to the training data. If the training data does not match the intended 
use case well, then a risk of unintended learning may occur leading to poor generalization of models

General Examples

- Identify the breed of dog from an image
- Would hope that model learns characteristics of dog breed
- But snow can effectively identify a husky!
- Other recent example – identifying skin cancer from image of slides 

using dermatologist’s markings

Insurance Modelling

• Unclear to what extent this is a risk for actuarial modelling
• If circumstances are changing rapidly (e.g. introduction of advanced 

driver assistance systems) then older data less useful => heightened risk 
with deep learning

• Inspect learned representations of models to ensure these accord with 
expert knowledge

28



PREDICTIVE ACCURACY OF DEEP LEARNING 
MODELS

Techniques to increase predictive accuracy also mitigate decision risk, apply for traditional modelling as well

Why?

Shifting modelling 
paradigm:

Description / causal 
explanation

Prediction

From

To

How?

Explicitly calculating 
Loss Function

Splitting Train/Test 
Data

Mitigate Decision Risk

by

to

29



LOSS FUNCTION AND ADDITIONAL CRITERIA 
FOR USE OF MODEL OUTPUT

DecisionModelLoss Function

Simple loss functions will 
typically not identify unique 

best model but class of 
sufficient good models 

Predictive accuracy is only one 
criteria for using model outputs, 
other criteria (e.g. commercial 
considerations for pricing) are 

applied as well

Investigate if additional 
criteria can be used to 
enhance loss function

30



STABILITY AND CONSISTENCY OF NEUTRAL 
NETWORKS

Training time

• Neural networks trained in stochastic 
manner (batch selection, parameter 
initialization, regularization)

• Induces dependence on random seed i.e. 
results may not be reproducible and hard to 
evaluate performance

• Multiplicity of models – may have 
significant implications for individual 
policyholders

• Potential solution – ensembling of models

Recalibration

• Consistency of neural networks over time 
not yet researched

• Ideally, should avoid major changes in 
outputs unless corresponding shift in 
training data 

• Use stable techniques to assess if shift 
over time is reasonable
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EXAMPLE 1 – FRENCH MOTOR TPL

Description

• Dataset consists of policy characteristics and claims on French Motor Third Party Liability 
portfolio

• Deep learning shown in several studies to outperform other approaches
• Analyzed using deep neural net with:

• 5 layers of neurons
• Embedding layers

• Code provided in paper

Model Risk Considerations

• Learned representations (after PCA) shown in figure and compared to observed frequencies
• In line with intuitions:

• Shape is similar to data implied rates
• Younger drivers have higher values than older drivers
• High density has higher frequency than low density

• At oldest ages, model not in line with data and needs further investigation:
• Modify model at oldest ages
• Use GLM at older ages

• Not much ability to check biases within this dataset
• Could consider whether we expect learned representations to generalize well

32



EXAMPLE 2 – MORTALITY FORECASTING

Description

• Dataset consists of mortality rates observed in 38 different countries in the period 1950-2016, 
for males and females

• Analyzed using deep neural networks in Richman and Wuthrich (2019):
• 5 layer deep neural network
• Embedding layers
• Code provided in the referenced paper

Model Risk Considerations

• Learned representations (after PCA) again in line with intuitions:
• Overall representation is in shape of lifetable
• Representations lower in 2010 compared to 2000
• Ranking of mortality by country maintained
• Greater risk compared to motor example, since need to forecasts out-of-sample and out-of-

time => special controls required to ensure this part of the model is functioning correctly
• Unlikely to suffer from unwanted bias, but should be aware of “regime shift” to lower 

improvements in certain countries
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CONCLUSION

Defined formal framework for actuarial models 
(traditional, ML, DL)

1

Assessment of differences between models and 
consequences for model risk management

2

Implicit model specification introduces opaqueness 
to actuarial models

3

Representation learning exacerbates issues of bias 
in actuarial modelling  

4

Controls have been identified to mitigate some of 
the additional exposure

5

Those controls require that actuaries acquire good 
understanding of DL models and practices

6

Success of DL models (predictive accuracy) and application in actuarial science indicate that further investigation into techniques to mitigate 
model risk is advisable 
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