

AGLM as an Area of Investigation

Suguru & Iwahiro From Japan •

May 20th, 2021

About the Speakers

Suguru Fujita, FIAJ, CERA

- Guy Carpenter Japan, Inc.
- Life (3yr) -> Non-Life (1.5yr) -> Reinsurance (3.5yr)
- M.S./B.E. Applied Mathematics

Iwahiro (Hirokazu Iwasawa), FIAJ

- Teacher of actuarial science
- Guest Professor of Waseda University, etc.
- Wrote 9 math books, among others
- Board member of JARIP

IAJ: Institute of Actuaries of Japan

- ASTIN-related study group
- Data Science-related research group

Agenda

1. Introduction

2. AGLM Tour

3. Further Voyage

1. Introduction

- What is AGLM?
- AGLM Project
- History and Development

What is AGLM?

Our proposed model, which is...

- A hybrid modeling method of GLM and Data Science techniques
- Aiming for well-balanced model in terms of both Interpretability and Prediction accuracy

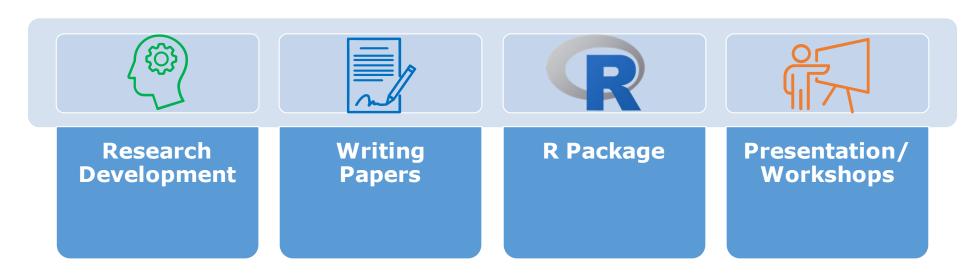
AGLM Project

Current team members – 6 actuaries!

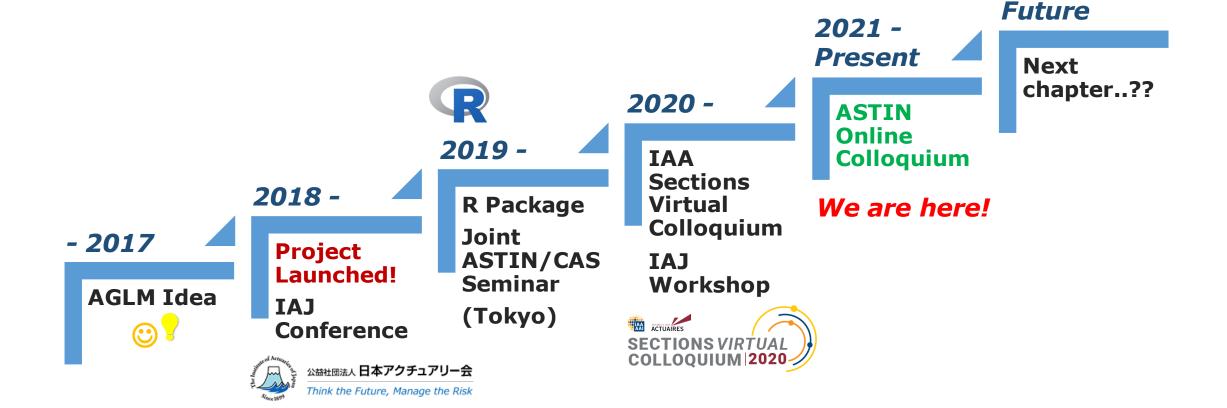
- Suguru Fujita
- Tsudoi Kaminaka
- Toyoto Tanaka
- Takahiro Kobayashi
- Kazuhisa Takahashi
- Hirokazu Iwasawa

Special thanks to Kenji Kondo as the author and maintainer of the R package for AGLM

Activities:



History and Development



2. AGLM Tour

- Definition
- Model Pipeline
- Non-linearity Treatment
- R Package aglm

Definition

AGLM consists of three techniques:

- What does 'A' stand for?
 - "Accurate" expect higher prediction accuracy than GLM
 - "Actuarial," "Accountable," etc. see it as a somewhat symbolic letter representing other words as well

Model Pipeline

Feature Engineering

Regularized GLM

Notation -

y	Response variable
х	Features
β	Regression coefficients
n	# observations
p	# features
g	Link function
L	Likelihood function

GLM:

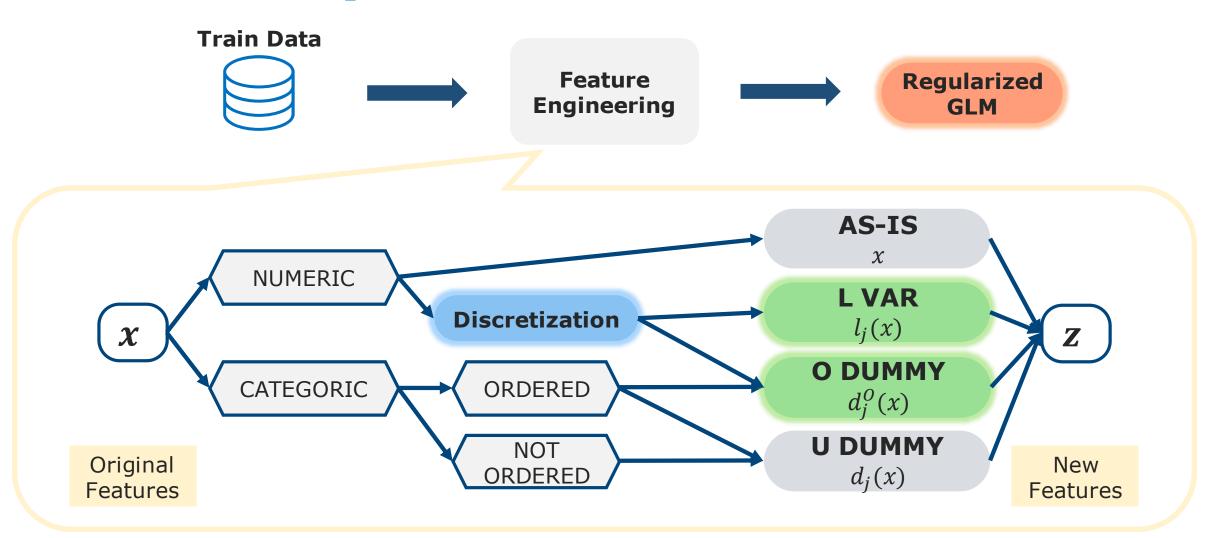
$$E[y_i] = g^{-1}(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}) \quad (i = 1, \dots, n)$$

Optimization:

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \{ -\log L(\boldsymbol{\beta}) + R(\boldsymbol{\beta}; \boldsymbol{\lambda}) \} \}$$

 $R(\beta; \lambda)$: regularization term (lasso, ridge, elastic net, etc.)

Model Pipeline



Non-linearity Treatment

O Dummy Variables

• Elaborate on dummy variables

U (Usual) Dummy

$$d_j(x) = \begin{cases} 1 & \text{if } x = j; \\ 0 & \text{otherwise.} \end{cases}$$

Assume the discretized feature x takes m levels $\{1,2,\dots,m\}$ $(\ni j)$

O (Ordinal) Dummy

$$d_j^0(x) = \begin{cases} 1 & \text{if } x > j; \\ 0 & \text{otherwise.} \end{cases}$$

X	$d_1(x)$	$d_2(x)$	$d_3(x)$	•••	$d_{m-1}(x)$	$d_m(x)$
1	1	0	0	•••	0	0
2	0	1	0	•••	0	0
3	0	0	1	•••	0	0
:	:	:	:	••	:	:
m-1	0	0	0	• • •	1	0
m	0	0	0	•••	0	1

X	$d_1^{O}(x)$	$d_2^{O}(x)$	$d_3^{0}(x)$	•••	$d_{m-1}^{0}(x)$	$d_m^0(x)$
1	0	0	0	•••	0	0
2	1	0	0	•••	0	0
3	1	1	0	•••	0	0
:	:	:	:	••	:	:
m-1	1	1	1	•••	0	0
m	1	1	1	•••	1	0

Non-linearity Treatment

L Variables

Further elaborate on numerical features

L (Linear) Variables

Assume the discretized feature x takes m levels $\{1,2,\dots,m\}$ $(\ni j)$

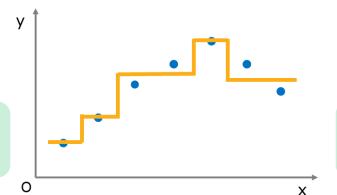
where b_i is boundary of bin

$$l_j(x) = \begin{cases} \left| x - b_j \right| & (j = 1, \dots, m - 1); \\ x & (j = 0 \text{ as a linear term}). \end{cases}$$

To illustrate...

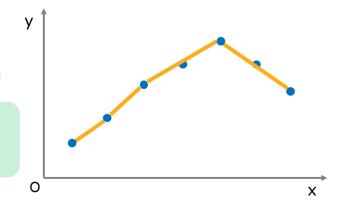
O Dummy: Step-wise Function

$$x \mapsto \sum_{j} \beta_{j} d_{j}^{O}(x)$$



L Variables:
Piece-wise
Linear Function

$$x \mapsto \sum_{j} \beta_{j} l_{j}(x)$$



Non-linearity Treatment

AGLM virtually covers the existing regularization terms:

O Dummy + L1 Regularization -> Fused Lasso Effect L Variables + L1 Regularization -> Trend Filter-like Effect

Will deep-dive into this topic in the next section! ©

R Package aglm

A handy R package for AGLM (since Jan. 2019)

GitHub - https://github.com/kkondo1981/aglm

What's New

• Wider range of distributions are available (incl. Gamma/Negative binomial/Tweedie) with the update of glmnet ver.4.0* (May 2020)

^{*} https://glmnet.stanford.edu/articles/glmnet.html

3. Further Voyage

Advantages to be extended

- From the viewpoint of implementation, AGLM is a set of modeling methods realized by using the glmnet algorithm efficiently.
- Thus, AGLM has the following advantages:
 - · Resulting models can be constructed reliably and relatively very fast.
 - As well as L1 and L2 regularizations, the Elastic Net regularization is available from the beginning.
 - Since May in 2020, all GLM families of distributions are available, including actuaries' favorite Gamma distribution and Tweedie distribution.
- The advantages can be vastly extended by adding varieties of simple devices to the present aglm.

Two approaches to expand AGLM

- Recall that, in the cases of O Dummy and L Variable, there are two steps in implementation of them,
 - i) binning and ii) regularization.
- For the first step, varieties of feature engineering other than binning may lead to new methods.
- For the second step, there is, in fact, a common form to be noted.
- So, there are two kinds of approaches:
 - i. Other feature engineering than binning
 - ii. A common form \rightarrow To be discussed first in what follows

A common form of expanding AGLM

• Our problem has the general form:

$$\min_{\beta} -\frac{1}{n} \ell(y, X\beta) + \lambda ||h(\beta)||$$

Here ℓ is a log-likelihood function and $\|\cdot\|$ is a norm of the Elastic Net including L1 and squared L2. The resulting model is called "Generalized Lasso" when, typically assuming normally distributed and homoscedastic, the norm is L1 and $h(\beta)$ is of $D\beta$ where D is a matrix.

• Generally speaking, the glmnet can be used as the backend for expanding AGLM if there is a vector γ and a kind of design matrix X' such that

$$\left(\min_{\gamma} - \frac{1}{n}\ell(y, X'\gamma) + \lambda \|\gamma\|\right) = \left(\min_{\beta} - \frac{1}{n}\ell(y, X\beta) + \lambda \|h(\beta)\|\right).$$

Regular Generalized Elastic Net

• When $h(\beta) = D\beta$ with some regular matrix D, let $\gamma = D\beta$ and $X' = XD^{-1}$, then

$$\left(\min_{\gamma} - \frac{1}{n}\ell(y, X'\gamma) + \lambda \|\gamma\|\right) = \left(\min_{\beta} - \frac{1}{n}\ell(y, X\beta) + \lambda \|D\beta\|\right).$$

• E.g., $D = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -1 & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & -1 & 1 \end{pmatrix} \Rightarrow D^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 1 & \cdots & \cdots & 1 \end{pmatrix}$ (O dummies for ordered variables)

 Find a meaningful regular matrix D in data analytics, you'll get a nice fast regularized GLM modeling method.

Generalized (Generalized) Ridge

• For the L2 regularization, it's not required that D is regular but only that $\operatorname{rank}(D) \geq p$. In this case, let $\gamma = D\beta$ and $X' = XD^+$ in which D^+ represents the pseudo-inverse of D, then

$$\left(\min_{\gamma} - \frac{1}{n}\ell(y, X'\gamma) + \lambda \|\gamma\|_2^2\right) = \left(\min_{\beta} - \frac{1}{n}\ell(y, X\beta) + \lambda \|D\beta\|_2^2\right).$$

• It means that the AGLM approach allows us to obtain any Generalized Ridge model corresponding to a Generalized Lasso with any GLM family distribution in a simple and reasonable way. For another approach, refer to the literature of "Laplacian Filter".

Examples of regular matrices for D

$D = (d_{ij})$	Existing methods with similar effects	Other notes
$d_{ij} = \begin{cases} 1 & (i = j) \\ -1 & (i = j + 1) \\ 0 & (Others) \end{cases}$	Fused Lasso (L1 norm) AGLM's O Dummy	Same as O Dummy for an ordered variable
$d_{ij} = \begin{cases} -2 & (i=j) \\ 1 & (i=j\pm 1) \\ 0 & (\text{Others}) \end{cases}$	Trend Filter (L1 norm) Hodrick-Prescott Filter (Squared L2 norm) AGLM's L variable	
$d_{ij} = \begin{cases} 1 & (i = j = 1) \\ 0 & (i = 1 \neq j, \\ j = 1 \neq i) \end{cases}$ $-\sum_{k=2}^{p} a_{i,k} (i = j \neq 1)$ $a_{i,j} \text{(Others)}$	Graph Trend Filter (L1 norm) Laplacian Filter (Squared L2 norm)	$A = (a_{ij})$ is the adjacency matrix

An example idea for Generalized Ridge — Dealing with periodicity

• Suppose a periodic variable has p levels. Then the following D's may be nice candidates for Generalized Ridge to deal with periodicity of the variable.

•
$$d_{ij} = \begin{cases} 1 & (i = j) \\ -1 & (i \equiv j + 1 \pmod{p}) \\ 0 & (\text{Others}) \end{cases}$$

•
$$d_{ij} = \begin{cases} -2 & (i = j) \\ 1 & (i \equiv j \pm 1 \pmod{p}) \\ 0 & (\text{Others}) \end{cases}$$

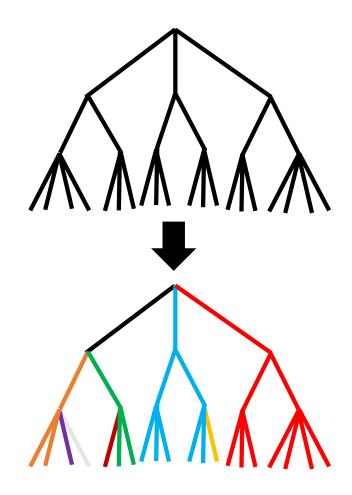
An example idea of feature engineering —Dealing with hierarchy

- Thanks to the function of variable selection via regularization, simple one-hot encoding for a hierarchical structure may work well.
- E.g., suppose there are three layers for a variable, say, a vehicle type with company, brand, and model. Then three sets of variables:

$$x_i = \begin{cases} 1 \text{ (company} = i\text{th company}) \\ 0 \text{ (Others)} \end{cases}$$

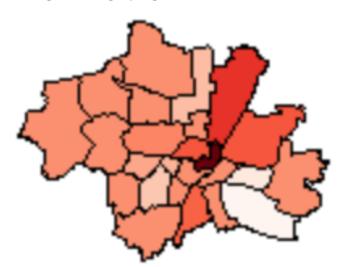
$$x_{ij} = \begin{cases} 1 \text{ (brand} = j\text{th brand of } i\text{th company}) \\ 0 \text{ (Others)} \end{cases}$$

$$x_{ijk} = \begin{cases} 1 \text{ (model} = k\text{th model of } i\text{th company, } j\text{th brand}) \\ 0 \text{ (Others)} \end{cases}$$

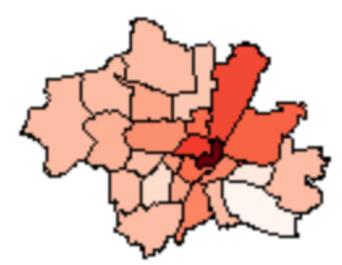


Application examples for spatial information

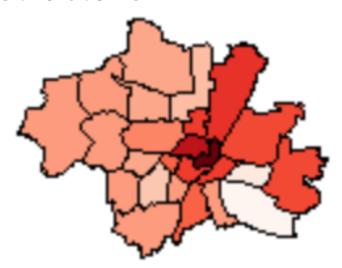
No spatial information



Graph-Trend-Filter-like



With hierarchical structure



- The dataset used is catdata::rent in CRAN.
- The response variable is rent. Explanatory variables are all others but rentm in the dataset and each area's population density from another source.
- All three models uses L1 norm and respectively select λ via cross validation.
- The hierarchical structure adopted here is a tentative one without domain knowledge.

Conclusion

- We hope you enjoyed the AGLM trip!
- Our conclusion message is:

"Would you like to go on an AGLM voyage with us?"

 Please feel free to tell your interest, or ask any question to <u>suguru.fujita@guycarp.com</u> and/or <u>iwahiro@bb.mbn.or.jp</u>

Thank you! ☺