

# LocalGLMnet: An Interpretable Deep Learning Architecture 

EAA e-Conference on Data Science \& Data Ethics

12 May 2022
Mario V. Wüthrich
RiskLab, ETH Zürich

- Regression problem
- Generalized linear models (GLMs)
- Neural network regression models
- LocalGLMnet architecture
- Example
- Outlook: regularization


## Regression modeling: car insurance example


observed frequency per driver's age groups

observed frequency per bonus-malus level groups

observed frequency per car brand groups


## Regression modeling: car insurance example



## Goal.

- Find a suitable regression function that describes the systematic effects as a function of the available covariates $\boldsymbol{x} \in \mathbb{R}^{q}$.
- This gives us pure risk premium

$$
\boldsymbol{x} \mapsto \mu(\boldsymbol{x})=\mathbb{E}_{\boldsymbol{X}}[Y],
$$

where $\boldsymbol{x}$ are the covariates (explanatory variables) describing claim $Y$.

- GLM: Choose strictly monotone link function $g$ and assume

$$
\boldsymbol{x}=\left(x_{1}, \ldots, x_{q}\right) \mapsto g\left(\mu^{\mathrm{GLM}}(\boldsymbol{x})\right)=\beta_{0}+\sum_{j=1}^{q} \beta_{j} x_{j}
$$

for regression parameter $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{q}\right) \in \mathbb{R}^{q+1}$.

- Regression parameter $\boldsymbol{\beta}$ is estimated with MLE.
- Examples: Gaussian, Poisson, Gamma and Inverse Gaussian GLMs.
- GLMs are linear in covariate $\boldsymbol{x}$ after applying link $g$, i.e., explainable.
- Often a linear function does not fit the data: requires covariate engineering.
- 50 years of GLMs: Nelder-Wedderburn (1972).


## From GLMs to neural networks

- GLM: Choose strictly monotone link function $g$ and assume

$$
\boldsymbol{x} \mapsto g\left(\mu^{\mathrm{GLM}}(\boldsymbol{x})\right)=\beta_{0}+\sum_{j=1}^{q} \beta_{j} x_{j}
$$

- (Neural) network: Set for regression function

$$
\boldsymbol{x} \mapsto g\left(\mu^{\mathrm{net}}(\boldsymbol{x})\right)=\beta_{0}+\sum_{j=1}^{q_{d}} \beta_{j} z_{j}^{(d: 1)}(\boldsymbol{x})
$$

where $\boldsymbol{x} \mapsto \boldsymbol{z}^{(d: 1)}(\boldsymbol{x}) \in \mathbb{R}^{q_{d}}$ is a network of depth $d$.

- Network learns a new representation $\boldsymbol{z}=\boldsymbol{z}^{(d: 1)}(\boldsymbol{x})$ of covariate $\boldsymbol{x}$.
- Network: Set for regression function

$$
\boldsymbol{x} \mapsto g\left(\mu^{\mathrm{net}}(\boldsymbol{x})\right)=\beta_{0}+\sum_{j=1}^{q_{d}} \beta_{j} z_{j}^{(d: 1)}(\boldsymbol{x})
$$

where $\boldsymbol{x} \mapsto \boldsymbol{z}^{(d: 1)}(\boldsymbol{x}) \in \mathbb{R}^{q_{d}}$ is a network of depth $d$.

- Network learns a new representation $\boldsymbol{z}=\boldsymbol{z}^{(d: 1)}(\boldsymbol{x})$ of covariate $\boldsymbol{x}$.
- Pros.
- A well-trained network often outperforms a GLM (universal approximation).
- Networks can process any kind of information x.
- Drawbacks.
- Network solution is often not interpetable and explainable.
- No simple way of variable selection.
- GLM:

$$
\boldsymbol{x} \rightarrow g\left(\mu^{G L M}(\boldsymbol{x})\right)=\beta_{0}+\sum_{j=1}^{q} \beta_{j} x_{j} .
$$

- Idea. Let a network learn regression attentions $\boldsymbol{\beta}=\boldsymbol{\beta}(\boldsymbol{x})$.
- Choose a network of depth $d$

$$
\mathbf{z}^{(d: 1)}: \mathbb{R}^{q} \rightarrow \mathbb{R}^{q}, \quad \boldsymbol{x} \rightarrow \boldsymbol{\beta}(\boldsymbol{x})=\boldsymbol{z}^{(d: 1)}(\boldsymbol{x}) .
$$

- LocalGLMnet: Set for regression function

$$
\boldsymbol{x} \rightarrow g(\mu(\boldsymbol{x}))=\beta_{0}+\sum_{j=1}^{q} \beta_{j}(\boldsymbol{x}) x_{j} .
$$

## Loca/GLMnet for regression attentions $\beta(x)$



- LocalGLMnet:

$$
\mathbf{x} \rightarrow g(\mu(\boldsymbol{x}))=\beta_{0}+\sum_{j=1}^{q} \beta_{j}(\boldsymbol{x}) x_{j}
$$

- If $\beta_{j}(\boldsymbol{x}) \equiv 0$ : drop term $x_{j}$.
- If $\beta_{j}(\boldsymbol{x}) \equiv \beta_{j}(\neq 0)$ : we have a GLM term in $x_{j}$.
- If $\beta_{j}(\boldsymbol{x})=\beta_{j}\left(x_{j}\right)$ : no interactions of term $x_{j}$ with $x_{j^{\prime}}, j^{\prime} \neq j$.
- Interactions: study gradient

$$
\nabla \beta_{j}(\boldsymbol{x})=\left(\frac{\partial}{\partial x_{1}} \beta_{j}(\boldsymbol{x}), \ldots, \frac{\partial}{\partial x_{q}} \beta_{j}(\boldsymbol{x})\right) \in \mathbb{R}^{q} .
$$

- LocalGLMnets have the universal approximation property.
- LocalGLMnet:

$$
\mathbf{x} \mapsto g(\mu(\boldsymbol{x}))=\beta_{0}+\sum_{j=1}^{q} \beta_{j}(\boldsymbol{x}) x_{j}
$$

- We do not have identifiability as we may still receive

$$
\beta_{j}(\boldsymbol{x}) x_{j}=x_{j^{\prime}},
$$

by learning a regression attention $\beta_{j}(\boldsymbol{x})=x_{j^{\prime}} / x_{j}$.

- We did not encounter this difficulty in gradient descent fitting, because the regression function seems rather pre-determined by the linear terms $x_{j}$ and using a GLM initialization for the gradient descent fitting algorithm.
- Choose regression function for $\boldsymbol{x}=\left(x_{1}, \ldots, x_{8}\right)$

$$
\mu(\boldsymbol{x})=\frac{1}{2} x_{1}-\frac{1}{4} x_{2}^{2}+\frac{1}{2}\left|x_{3}\right| \sin \left(2 x_{3}\right)+\frac{1}{2} x_{4} x_{5}+\frac{1}{8} x_{5}^{2} x_{6} .
$$

- Note that $x_{7}$ and $x_{8}$ do not enter the regression function.
- Simulate $\boldsymbol{x}$ and Gaussian observations $Y$ with means $\mu(\boldsymbol{x})$ and unit variance.
- Fit a LocalGLMnet to the attention weights $\boldsymbol{\beta}(\boldsymbol{x})=\boldsymbol{z}^{(d: 1)}(\boldsymbol{x})$, of depth $d=4$ with $(20,15,10,8)$ hidden neurons, see next slide.
- Fitting is done with stochastic gradient descent, and using early stopping.


## Loca/GLMnet for regression attentions $\beta(x)$


european actuarial academy

Estimated regression attentions $\widehat{\beta}(x)$
regression attentions: feature $\mathbf{x 1}$

regression attentions: leature $\times 5$

regression attentions: feature $\times 2$

regression attentions: feature $\times 6$

regression attentions: feature $\times 3$

regression attentions: feature x 7

regression attentions: feature $\times 4$

regression attentions: feature x8


$$
\mu(\boldsymbol{x})=\frac{1}{2} x_{1}-\frac{1}{4} x_{2}^{2}+\frac{1}{2}\left|x_{3}\right| \sin \left(2 x_{3}\right)+\frac{1}{2} x_{4} x_{5}+\frac{1}{8} x_{5}^{2} x_{6} .
$$

- Variables $x_{7}$ and $x_{8}$ do not enter the (true) regression function.
- This should imply $\widehat{\beta}_{j}(\boldsymbol{x}) \approx 0$ for $j=7,8$.
- We have empirical means and standard deviations

$$
\bar{\beta}_{7}=-0.0068, \bar{\beta}_{8}=-0.0010 \approx 0 \quad \text { and } \quad \hat{s}_{7}=0.0461, \hat{s}_{8}=0.0290
$$

- Choose significance level $\alpha \in(0,1)$ and consider

$$
I_{\alpha}=\left[\Phi^{-1}(\alpha / 2) \cdot \widehat{s}_{7 / 8}, \Phi^{-1}(1-\alpha / 2) \cdot \widehat{s}_{7 / 8}\right] .
$$

- Perform empirical Wald test for null hypothesis $H_{0}: \beta_{j}(\boldsymbol{x})=0$.
regression attentions: feature $\times 1$

regression attentions: feature $\times 5$

regression attentions: feature $\times 2$

regression attentions: feature $\times 6$

regression attentions: feature $\times 3$

regression attentions: feature x 7

regression attentions: feature $\times 4$

regression attentions: feature x8


$$
\mu(\boldsymbol{x})=\frac{1}{2} x_{1}-\frac{1}{4} x_{2}^{2}+\frac{1}{2}\left|x_{3}\right| \sin \left(2 x_{3}\right)+\frac{1}{2} x_{4} x_{5}+\frac{1}{8} x_{5}^{2} x_{6} .
$$

interactions of feature component x 1

interactions of feature component $\times 4$


$$
\mu(\boldsymbol{x})=\frac{1}{2} x_{1}-\frac{1}{4} x_{2}^{2}+\frac{1}{2}\left|x_{3}\right| \sin \left(2 x_{3}\right)+\frac{1}{2} x_{4} x_{5}+\frac{1}{8} x_{5}^{2} x_{6} .
$$

importance measure


Define importance measure

$$
\mathrm{VI}_{j}=\frac{1}{n} \sum_{i=1}^{n}\left|\widehat{\beta}_{j}\left(\boldsymbol{x}_{i}\right)\right| .
$$

- LocalGLMnet provides an explainable regression model.
- LocalGLMnet allows for variable selection.
- LocalGLMnet allows for a natural importance measure.
- LocalGLMnet allows for the study of interactions.
- All considerations have been based on continuous covariates.
- Categorical covariates are more difficult $\Rightarrow$ use regularization.
- LocalGLMnet needs a bias regularization step to receive unbiasedness.
- Including too many random components leads to more over-fitting potential.
- If predictive power is insufficient: fit network on selected covariates.

Assume covariates $\boldsymbol{x}$ have a natural group structure $\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{K}\right)$. Consider for fitting the network parameter $\boldsymbol{\theta}$ a penalized loss

$$
\underset{\boldsymbol{\theta}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} L\left(Y_{i}, \mu_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)\right)+\sum_{k=1}^{K} \eta_{k}\left\|\boldsymbol{\beta}_{k}\left(\boldsymbol{x}_{i}\right)\right\|_{2}
$$

with regularization parameters $\eta_{k} \geq 0$.
Shrinks unimportant weights $\beta_{j}(\boldsymbol{x})$ to 0 .

Figure shows initial car insurance example:
no regularization (green), medium regularization (yellow), strong regularization (red).


- Typically, gradient descent fitted networks do not fulfill the balance property

$$
\sum_{i=1}^{n} \widehat{\mu}\left(\boldsymbol{x}_{i}\right)=\sum_{i=1}^{n} g^{-1}\left(\widehat{\beta}_{0}+\sum_{j=1}^{q} \widehat{\beta}_{j}\left(\boldsymbol{x}_{i}\right) x_{i, j}\right) \neq \sum_{i=1}^{n} Y_{i}
$$

- This implies that insurance prices are biased.
- Use bias correction according to Denuit-Charpentier-Trufin (2021) or
- an additional GLM step with canonical link, see Wüthrich (2020),

$$
\boldsymbol{x}_{i} \mapsto g\left(\mu\left(\boldsymbol{x}_{i}\right)\right)=\alpha_{0}+\sum_{j=1}^{q} \alpha_{j} \widehat{\beta}_{j}\left(\boldsymbol{x}_{i}\right) x_{i, j}
$$

for regression parameter $\left(\alpha_{0}, \ldots, \alpha_{q}\right)$ and (frozen) covariates $z_{i, j}=\widehat{\beta}_{j}\left(\boldsymbol{x}_{i}\right) x_{i, j}$.


## Thank you very much for your attention

Contact<br>Mario V. Wüthrich<br>RiskLab, ETH Zürich<br>+41446323390<br>mario.wuethrich@math.ethz.ch

- Denuit, Charpentier, Trufin (2021). Autocalibration and Tweedie-dominance for insurance pricing with machine learning. Insurance: Mathematics \& Economics 101, 485-497.
- Richman, Wüthrich (2021). LocalGLMnet: interpretable deep learning for tabular data. SSRN Manuscript, ID 3892015.
- Richman, Wüthrich (2021). LASSO regularization within the LocalGLMnet architecture. SSRN Manuscript, ID 3927187.
- Wüthrich (2020). Bias regularization in neural network models for general insurance pricing. European Actuarial Journal 10, 179-202.
- Wüthrich, Merz (2021). Statistical foundations of actuarial learning and its applications. SSRN Manuscript. Manuscript ID 3822407.

