

ulm university universität **UUIIM**

Return Smoothing and Risk Sharing Elements in Life Insurance from a Client Perspective

(based on joint work with Jochen Ruß)

Ulm Actuarial Day | Stefan Schelling | 29.03.2019

Motivation

Decision Making of Long-term Investors

Model Framework

Selected Results

Motivation

Decision Making of Long-term Investors

Model Framework

Selected Results

Motivation

- Traditional participating life insurance (TPLI) contracts have been the core business of life insurers for many years.
 - typical components of TPLI contracts:
 - provide a year-to-year (cliquet) guarantee
 - receive additionally a surplus participation
 - main difference to individual retirement savings products:
 - life insurers pool assets and liabilities of a heterogeneous portfolio of TPLI contracts which allows for return smoothing and risk sharing.
 - \Rightarrow results in rather stable investment returns

Motivation

- (Current) challenges:
 - Iow interest rate environment
 - rather restrictive solvency requirements
 - allows only for low risk taking (due to rather high guarantees)
 - \Rightarrow total interest rate of TPLI contracts have decreased

smoothing and risk sharing mechanisms can reduce volatility of returns, but cannot compensate long-term decline in the capital market returns

Motivation

 However, versions of TPLI contracts are still popular in the segment of retirement savings

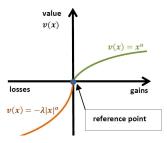
Q: Why are TPLI contracts so popular?

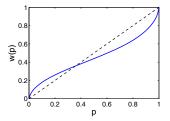
- How do clients perceive and evaluate TPLI contracts?
- Which features make TPLI contracts attractive?
 - role of smoothing and risk sharing elements
 - role of guarantees
- Approach:
 - we model these elements in detail by means of a stylized insurance company within a stochastic model framework
 - apply a descriptive model to analyze the impact of these elements from a client perspective
 - compare results for TPLI products with results for unit-linked products

Motivation

Decision Making of Long-term Investors

Model Framework


Selected Results


How do clients perceive and evaluate TPLI contracts?

- Decision making of humans (often) depends on heuristics which can lead to cognitive biases and systematic deviations from rational decisions.
- A popular descriptive model of decision making is Cumulative Prospect Theory (CPT):
 - introduced by Tversky and Kahneman (1992)
 - descriptive model that tries to give a more accurate description of actual decision making
 - models several cognitive biases
 - consideration of gains and losses with respect to a reference point instead of the total wealth

Main components of CPT:

- S-shaped value function (v)
- different treatment of gains (concave) and losses (convex) (α)
- loss aversion w.r.t. a reference point
 (λ)
- probability distortion function (w)
- tail events with small prob. are overweighted (γ)

Common approach in this context:

Consideration of the distribution of the total change in wealth, i.e.,

$$X := P_T - P_0$$

with P_t denoting the level of wealth at time t.

▶ The CPT (subjective) utility is then defined as

$$CPT(X) := \int_{-\infty}^{0} v(x)d(w(F(x))) + \int_{0}^{\infty} v(x)d(-w(1-F(x)))$$

with $F(s) = \mathbb{P}(X \leq s) = \int_{-\infty}^{s} d\mu_X$.

However, several studies (e.g., Benartzi and Thaler, 1995) indicate that long-term investors tend to take into account future annual value changes already when making the investment decision.

- Ruß and Schelling (2018) propose a model (MCPT) that considers a long-term investor whose investment decision is based on the distributions of <u>all</u> future annual value changes rather than solely on the distribution of the terminal outcome.
- Studies (Ruß and Schelling, 2018; Graf et al., 2018) indicate that MCPT describes long-term decision making more accurately.

The MCPT value at $t_0 = 0$ of investment A with maturity T and annual value changes $\{X_t\}_{t=1}^T$ with $F_t(x) = \mathbb{P}(X_t \le x)$ is defined by

$$MCPT(A) := \sum_{t=1}^{T} CPT(X_t),$$

where $CPT(X_t) = \int_{-\infty}^{0} v(x) d(w(F_t(x))) + \int_{0}^{\infty} v(x) d(-w(1-F_t(x))).$

Motivation

Decision Making of Long-term Investors

Model Framework

Selected Results

Model Framework¹

- We consider the following TPLI contract:
 - policyholder with initial age of x = 40 years
 - term to maturity T = 20 years
 - annual premium P derived by principle of equivalence
 - annual charges c^p_t
 - total interest rate is based on
 - ▶ annual guaranteed interest rate $i^g = 1.25\%$ (cliquet style)
 - additional surplus participation
 - \Rightarrow depends on smoothing and risk sharing elements
 - \Rightarrow based on a stylized insurance company

¹For more information see preprint Ruß and Schelling (2018b).

Model Framework

- Main aspects of the stylized insurance company
 - heterogeneous insurance portfolio
 - at the beginning of each year a new cohort of contracts joins
 - contracts differ w.r.t. guaranteed rate and contract inception
 - initial portfolio has been built up over the previous T years based on a historic deterministic scenario
 - collective assets
 - portfolio of coupon bonds and stocks
 - strategic annual rebalancing of the asset allocation (stock ratio $\approx 10\%$)
 - differences in market and book values of the assets may result in unrealized gains and losses
 - investment surplus is the only source of surplus ²
 - ▶ \geq 90% of the investment return are distributed to the policyholder (→ collective RfB)
 - (collective) reserves for premium refunds (collective RfB)
 - can be used as buffer to smooth returns for clients

 $^2 \ensuremath{\text{first}}$ and second-order mortality rates and charges coincide, no lapses, tax payments etc.

Model Framework

Surplus distribution:

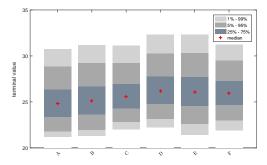
- **b** total investment return of the insurance company i_t^* is mainly based on
 - coupon payments
 - building up and dissolving unrealized gains and losses
- Insurer stipulates in advance the total interest rate kit of the policyholder at the beginning of each year (for each cohort k)
 - subject to further smoothing and risk sharing elements
 - ▶ credited at the end of each year (collective RfB → account value)
- total interest rate kit:
 - 1. based on average total investment returns of the last 3 years $(\overline{i_t^*})$
 - 2. insurer reduces (increases) $_k i_t$ in case of rather low (high) reserves ($\Delta reserve$)
 - 3. at least guaranteed interest rate (i_{t-k}^g)
 - 4. expiring contracts receive addional terminal bonus rate $\binom{i^{term}}{t}$

$$\begin{split} i_t &= 0.9 \cdot \overline{i_t^*} + \pi \cdot \Delta reserve \quad (\pi \text{ adjustment factor}) \\ \Rightarrow _k i_t &= i_{t-k}^g + \max\left\{i_t - i_{t-k}^g, 0\right\} \\ _k i_t &= \max\left(i_t + i_t^{term}, i_{t-k}^g\right) \text{ (at maturity)} \end{split}$$

Model Framework

Impact of systematic intergenerational effects:

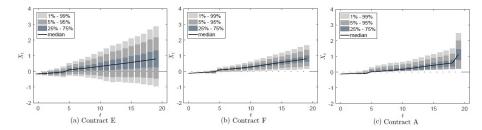
- E.g. new contracts possibly . . .
 - subsidize old contracts (with much higher guaranteed rates)
 - benefit from assets that have been bought in the past.
- impacts of different aspects are not intuitively clear
- Eckert et al. (2018) propose a measure for the ex ante "collective bonus"
 - contract receives an ex ante "collective bonus" if on average it will earn more than an investment in a reference portfolio that replicates the market values of the assets of the insurance company
 - we consider the ex ante collective bonus in relation to the fair value of the investment in the reference portfolio (CB%)
- Some contract settings:
 - Contract A (base case): $CB^{\%} = -6.12\%$.
 - Contract B (+ $\Delta reserve = 0$ at inception): $CB^{\%} = -5.08\%$
 - ▶ Contract C (+ all contracts have the same guaranteed rate): $CB^{\%} = -2.31\%$
 - ▶ Contract D (+ increase surplus participation to \approx 97%): $CB^{\%} = 0\%$


Motivation

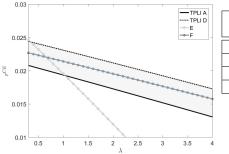
Decision Making of Long-term Investors

Model Framework

Selected Results


Percentiles of the terminal value:

- E: unsmoothed investment in the reference portfolio replicating the market value of the assets of the insurance company ($CB^{\%} = 0\%$).
- F: investment that earns the average investment return \overline{i}_t^* , that is, only asset smoothing but no further risk sharing ($CB^{\%} = -1.38\%$).
- \Rightarrow Rather similar risk-return characteristics of the terminal value


Percentiles of the annual changes:

X_t = A_t − A
_{(t-1)+} with A
_{(t-1)+} denoting the account value at time t − 1 plus the premium P paid at time (t − 1)+

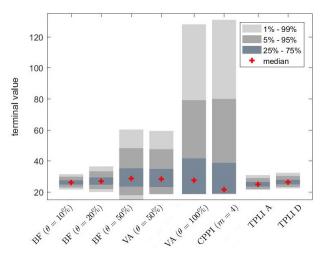
- E: unsmoothed investment in the reference portfolio (a)
- F: investment that earns the average investment return $\overline{i^*}_t$ (b)
- A: TPLI (base case) (c)
- ⇒ Collective investment can heavily stabilize annual changes without significantly changing the risk-return characteristics of the terminal value

Results for an MCPT-investor³:

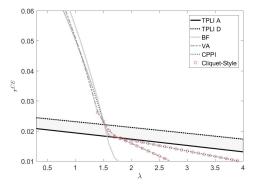
contract	return	risk		coll.
setting	smooth.	sharing	i ^g	bonus
TPLI A	1	1	1.25%	-6.12%
TPLI D	1	1	1.25%	0%
E	×	×	×	0%
F	1	(×)	×	-1.38%

 r^{CE} describes the guaranteed annual return that an investor would regard equally desirable as the considered contract.

Contract E without return smoothing is significantly less attractive than other products.

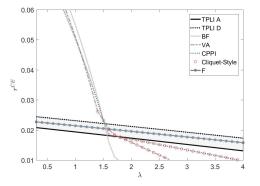

Result for contract F shows that collective smoothing elements heavily increases attractiveness.

 $^{3}\gamma=$ 0.65 (probability weighting), lpha= 0.88 (sensitivity to marginal gains and losses)


Comparison with common individualized unit-linked products:

- Products without guarantee
 - Balanced fund (BF) (invests $\theta \in [0,1]$ in risky and (1θ) in a less risky asset)
- Products with guarantee
 - 1. Variable annuity (VA) products
 - ensure guarantee by a suitable hedging strategy (option-based)
 - 2. Constant proportion portfolio insurance (CPPI) products
 - achieve "guarantee" by dynamic investment strategy
 - considered guaranteed types for VA and CPPI products:
 - (a) terminal guarantee only ("money-back")
 - (b) additional annual cliquet-style guarantee
- additional charges for unit-linked products:
 - fund charges $\gamma^F = 1\%$
 - (fair) guarantee fees γ^g for VA products
 - ▶ charge for overnight risk $\gamma^{g,CPPI} \approx 0.1\% 0.2\%$ for CPPI products

Exemplary percentiles of the terminal value:



Results for an MCPT-investor:

- Unit-linked products (without guarantee) are significantly more attractive than TPLI contracts in case of low degrees of loss aversion ($\lambda \le 1.5$)
- TPLI contracts are preferred over other products for typical degrees of loss aversion → note that this is even true for unit-linked products with annual guarantee feature!

Results for an MCPT-investor:

- Unit-linked products (without guarantee) are significantly more attractive than TPLI contracts in case of low degrees of loss aversion ($\lambda \le 1.5$)
- TPLI contracts are preferred over other products for typical degrees of loss aversion → note that this is even true for unit-linked products with annual guarantee feature!

Motivation

Decision Making of Long-term Investors

Model Framework

Selected Results

Summary

The results show:

- collective investment can heavily stabilize annual returns without significantly changing the risk-return characteristics of terminal value
- For an MCPT-investor:
 - Smoothing elements significantly increase the attractiveness (even in case without guarantee)
 - TPLI products are preferred over common unit-linked products
 - \Rightarrow MCPT provides an explanation for the popularity of traditional participating life insurance products
- Hence, the results indicate (w.r.t. product design) that participating products ...
 - which make use of smoothing and risk sharing elements of a collective investment and
 - with rather weak (or even without) guarantee features ...

seem promising in ...

- providing an objectively superior distribution of terminal value
- while at the same subjectively being attractive for the customer.

Thank you for your attention!

Stefan Schelling Institute of Insurance Science Ulm University Germany

stefan.schelling@uni-ulm.de

Selected References

- Benartzi, S., & Thaler, R. H. (1995). Myopic loss aversion and the equity premium puzzle. The Quarterly Journal of Economics, 110(1), 73–92.
- Eckert, J., Graf, S., & Kling, A. (2018): A measure to analyse the interaction of contracts in a heterogeneous life insurance portfolio. Working paper.
- Graf, S., Ruß, J., & Schelling, S. (2018): As you like it: Explaining the demand for life-cycle Funds with Multi Cumulative Prospect Theory. Working Paper.
- Ruß, J., & Schelling, S. (2018): Multi cumulative prospect theory and the demand for cliquet-style guarantees. *Journal of Risk and Insurance*, 85(4), 1103–1125.
- Ruß, J., & Schelling, S. (2018b): Return Smoothing and Risk Sharing Elements in Life Insurance from a Client Perspective. Working Paper. Preprint available under https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.140/Team/ sschelling/Russ_Schelling_Return_Smoothing_and_Risk_Sharing_Elements_from_ a_Client_Perspective_V-2018-11-20.pdf
- Tversky, A., & Kahneman, D. (1992): Advances in prospect theory: Cumulative representation of uncertainty. *Journal of Risk and Uncertainty*, 5.4, 297–323.