Quantifying Reserve Risk Based on Volatility in Triangles of Estimated Ultimate Losses

> Ira Robbin, PhD, ACAS Southern Connecticut State University

Yu Shi "Andy" Feng, FCAS TransRe

Agenda

- Reserve Risk Intro
- The "Triangle Structure Problem"
- Feng-Robbin Method
- Comparison of Methods
- Questions

Which LOB's reserve is more volatile?

LOB A -	Incurred	Loss							
	12	24	36	48	60	72	Latest	SD	CV
2015	400	600	800	850	900	900	900	201	22.34%
2016	300	500	700	750	800		800	207	25.92%
2017	450	700	850	900			900	202	22.45%
2018	500	750	1000				1,000	250	25.00%
2019	350	500					500	106	21.21%
2020	600						600		0.00%
LOB B -	Incurred	Loss							
	12	24	36	48	60	72	Latest	SD	CV
2015	400	400	850	850	900	900	900	246	27.37%
2016	200	1000	700	750	800		800	297	37.08%
2017	100	700	900	900			900	379	42.07%
2018	500	900	1000				1,000	265	26.46%
2019	200	1000					1,000	566	56.57%
2020	700						700		0.00%

CVs of <u>Case Incurred Loss</u> TD by Row?

 Does not distinguish strongly enough between LOBs

 Confuses development in reported loss with volatility of loss development

Which LOB's reserve is more volatile?

LOB A - Estimated Ultimate Losses using Industry LDF Development									
	12	24	36	48	60	72	Latest	SD	CV
2015	924	866	924	893	900	900	900	22	2.40%
2016	693	722	809	788	800		800	52	6.44%
2017	1,040	1,011	982	945			945	40	4.28%
2018	1,155	1,083	1,155				1,155	42	3.61%
2019	809	722					722	61	8.49%
2020	1,386						1,386		0.00%

LOB B -	Estimat	ed Ultim	ate Loss	ses using	g Industr	y LDF D	evelopm	ent	
	12	24	36	48	60	72	Latest	SD	CV
2015	924	578	982	893	900	900	900	143	15.94%
2016	462	1,444	809	788	800		800	357	44.66%
2017	231	1,011	1,040	945			945	386	40.82%
2018	1,155	1,299	1,155				1,155	83	7.22%
2019	462	1,444					1,444	694	48.08%
2020	1,617						1,617		0.00%

CVs of <u>Estimated Ultimate</u> Loss by Row?

 Does distinguish strongly enough between LOBs

 Attempts to disentangle loss development from volatility of loss development

Omniscient Actuary

LOB A -	LOB A - Final Best Estimate of Ultimate Losses								
	12	24	36	48	60	72	Latest	SD	CV
2015	910	877	921	893	900	900	900	15	1.68%
2016	810	777	821	793	800		800	17	2.11%
2017	960	977	971	943			943	15	1.57%
2018	1,010	1,027	1,121				1,121	60	5.32%
2019	860	777					777	59	7.63%
2020	1,110						1,110		0.00%

LOB B -	LOB B - Final Best Estimate of Ultimate Losses								
	12	24	36	48	60	72	Latest	SD	CV
2015	900	900	900	900	900	900	900	-	0.00%
2016	800	800	800	800	800		800	-	0.00%
2017	950	950	950	950			950	-	0.00%
2018	1,100	1,100	1,100				1,100	-	0.00%
2019	1,250	1,250					1,250	-	0.00%
2020	1,200						1,200		0.00%

Ultimate Loss Development Factors

LOB A - Ultim					
	12	24	36	48	60
2015	0.9656	1.0518	0.9708	1.0084	1.0012
2016	0.9614	1.0584	0.9672	1.0094	
2017	1.0192	0.9956	0.9723		
2018	1.0183	1.0927			
2019	0.9058				
2020					

LOB B - Ultin	rs				
	12	24	36	48	60
2015	1.0000	1.0000	1.0000	1.0000	1.0000
2016	1.0000	1.0000	1.0000	1.0000	
2017	1.0000	1.0000	1.0000		
2018	1.0000	1.0000			
2019	1.0000				
2020					

UDF Analysis – the Key to Reserve Risk

- UDF Ultimate Loss Development Factor
 - Age-to-age factor in triangle of estimated ultimate loss amounts
- Reserve risk is buried in the volatility of ageto-age UDF
- UDF Volatility impacted by both inherent volatility of the data and the methods/parameters used to estimate ultimate.

Reserve Risk

- Definition: the potential for adverse development of the estimate of ultimate
- Volatility of data (inherent error)
 - Reserve Risk in triangle is 0 if all UDFs =1
- Different estimates of ultimate have different risk.

Many Ways to Quantify Reserve Risk

- Based on paid and incurred triangle
 - ICRFS/Zenwirth Trends of log-normal increments
 - URS/Alex Stochastic Decay Model
 - Ohlsson and Lauzenings Diagonal simulation and defined reserving method
 - Mack closed-form chain ladder
 - Merz Wuthrich one-year risk
 - MCMC Methods
- Based on ultimate loss triangles
 - Rehman Klugman
 - Siegenthaler
 - Feng Robbin

Feng-Robbin Estimates

- Based on ultimate loss triangles
- Uses Variance-Covariance of UDF
- Derives Variance of one year and ultimate reserve conditional on current estimated ultimates.
- Includes development age covariance terms
- Parameter risk quantified as deviation from 1
- One estimate among many

Agenda

- Reserve Risk Intro
- The "Triangle Structure Problem"
- Feng-Robbin Methods
- Comparison of Methods
- Questions

Triangle Structure Problem

- Hidden lack of positive semi-definiteness
 - Covariance of UDF factor columns use vectors of different sizes
 - Resulting variance-covariance matrix may not be positive semi-definite
 - Could lead to negative calculated variance
- Tail-driven instability
 - Tail UDFs based on small sample sizes
 - Leveraged impact
 - Could lead to unstable risk estimates

Agenda

- Reserve Risk Intro
- The "Triangle Structure Problem"
- Feng-Robbin Method
- Comparison of Methods
- Questions

Rehman & Klugman (2010)

Computes ultimate reserve risk

Assumes UDFs (g factors) follow log-normal distribution

Uses sample mean and variance as estimators

Uses first order Taylor Series approximations

Feng & Robbin (2021)

Computes both one-year and ultimate reserve risk

Provides more detailed treatment of covariance

Addresses the triangle structure problem

Includes a parameter error term

Feng Robbin Method Steps

- Step 1 Obtain Ultimate Triangles
- Step 2 Calculate ATA UDF Factors
- Step 3 Take Logarithm of UDF Factors
- Step 4 Calculate Var-CoVar Matrix
- Step 5 Calculate Weight factors
- Step 6 Compute One-year and Ultimate standard errors

Step 1 – Obtain Ultimate Triangles

AY\Age	d=1	2	3	4	5	D=6
<i>y</i> =1	900	877	921	1,250	901	900
2	900	777	821	788	800	
3	900	977	971	945		
4	900	1,027	1,121			
5	900	777				
<i>Y</i> =6	900					

Step 2 – Calculate ATA UDF Factors

AY\Age	1-2	2-3	3-4	4-5	5-6
1	0.9744	1.0502	1.3572	0.7208	0.9989
2	0.8633	1.0566	0.9598	1.0152	
3	1.0856	0.9939	0.9732		
4	1.1411	1.0915			
5	0.8633				

Step 3 – Log UDF Factors, Mean, Var

AY\Age	1-2	2-3	3-4	4-5	5-6
1	(0.025888)	0.048953	0.305439	(0.327394)	(0.001110)
2	(0.146954)	0.055083	(0.041025)	0.015114	
3	0.082092	(0.006160)	(0.027142)		
4	0.132002	0.087579			
5	(0.146954)				

The estimated unadjusted mean and variance of each log UDF factor is computed below:

Age	d=1	2	3	4	5
$\hat{\mu}_d$	(0.021140)	0.046364	0.079091	(0.156140)	(0.001110)
$\hat{\sigma_d}^2$	0.016448	0.001513	0.038473	0.058656	n/a

Step 4 – Variance – Covariance Matrix*

Age\Age	d=1	2	3	4	5
<i>d</i> =1	0.016448	(0.000063)	0.001086	(0.010367)	-
2	(0.000063)	0.001513	0.002090	0.000606	-
3	0.001086	0.002090	0.038473	(0.041955)	-
4	(0.010367)	0.000606	(0.041955)	0.058656	-
5	_	_	_	_	-

Step 5 – Calculate Weight Factors

AY	<i>Y</i> =6	5	4	3	2	<i>y</i> =1
r_y	0.1653	0.1428	0.2060	0.1736	0.1470	0.1653

Development Age	<i>d</i> =1	2	3	4	5	D=6
Corresponding AY	Y =6	5	4	3	2	<i>y</i> =1
R _d	0.1653	0.3081	0.5141	0.6877	0.8347	1.0000

Step 6 – Ultimate Reserve Risk

$$\operatorname{StDev}\left(\sum_{y=1}^{Y} U_{y,D}\right) = \sum_{y=1}^{Y} U_{y,D-y+1} \times \sqrt{\left(e^{2\widehat{\omega}+2\widehat{\lambda}^{2}}-e^{2\widehat{\omega}+\widehat{\lambda}^{2}}\right)}$$

Latest ultimate	Mean parameter	Variance parameter	Standard error
$\sum_{y=1}^{Y} U_{y,D-y+1}$	$\widehat{\omega}$	$\hat{\lambda}^2$	$\operatorname{StDev}\left(\sum_{y=1}^{Y} U_{y,D}\right)$
5,443	(0.056854)	0.007575	450

Step 6 – One-Year Reserve Risk

$$\operatorname{StDev}\left(\sum_{y=1}^{Y} U_{y,D-y+2}\right) = \sum_{y=1}^{Y} U_{y,D-y+1} \times \sqrt{\left(e^{2\widehat{\alpha}+2\widehat{\theta}^{2}} - e^{2\widehat{\alpha}+\widehat{\theta}^{2}}\right)}$$

Latest ultimate	Mean parameter	Variance parameter	Standard error
$\sum_{y=1}^{Y} U_{y,D-y+1}$	â	$\hat{ heta}^2$	$\operatorname{StDev}\left(\sum_{y=1}^{Y} U_{y,D-y+2}\right)$
5,443	(0.007860)	0.000509	122

Triangle Structure Problem

Age\Age	d=1	2	3	4	5
d=1	0.016448	(0.000073)	0.001536	(0.020733)	-
2	(0.000073)	0.001513	0.002559	0.001050	-
3	0.001536	0.002559	0.038473	(0.059333)	-
4	(0.020733)	0.001050	(0.059333)	0.058656	-
5	-	-	Sum	is Negative!	-

Triangle Structure - Fixes

- Fill-in procedure
 - Var-coVar matrix using the filled-in square
- Diagonal calibrated procedure
 - Start from the fill-in Var-coVar matrix
 - Replace the diagonal with sample variance
- Full adjustment procedure
 - Start from the fill-in Var-coVar matrix
 - Factor adjustments to the entire matrix

Fill-In Procedure

AY\Age	1-2	2-3	3-4	4-5	5-6
1	(0.025888)	0.048953	0.305439	(0.327394)	(0.001110)
2	(0.146954)	0.055083	(0.041025)	0.015114	(0.001110)
3	0.082092	(0.006160)	(0.027142)	(0.156140)	(0.001110)
4	0.132002	0.087579	0.079091	(0.156140)	(0.001110)
5	(0.146954)	0.046364	0.079091	(0.156140)	(0.001110)

Revised Variance – Covariance Matrix*

Age\Age	d=1	2	3	4	5
<i>d</i> =1	0.016448	(0.000063)	0.001086	(0.010367)	-
2	(0.000063)	0.001513	0.002090	0.000606	-
3	0.001086	0.002090	0.038473	(0.041955)	-
4	(0.010367)	0.000606	(0.041955)	0.058656	-
5	-	_	Sum	is Positive	-

Parameter Risk

 Measures difference between the average UDF and 1 for each age

Essentially the same as Siegenthaler's formula

Agenda

- Reserve Risk Intro
- The "Triangle Structure Problem"
- Feng-Robbin Methods
- Comparison of Methods
- Questions

Advantages of R-K, F-R, and Siegenthaler

- Can work with any actuarial method or mix of methods
- Can quantify risk at any stage in reserving process:
 - For a specific method only
 - For the actuarial best estimate
 - For management booked estimate
- Works well for lines with sparse activity in early years
- Fast and spreadsheet friendly
- Rewards accurate IBNR estimates
 - If ultimate loss estimates are historically stable and accurate along each row, these method shows low volatility.

Disadvantages

- Need to construct historical ultimate triangles
- Favorable development translates to higher reserve risk?
- Does not capture future changes in reserve methodology not present in ultimate triangle
- Gives standard errors but not simulation results
- Need additional assumptions to get 99.5%
 VaR

Agenda

- Reserve Risk Intro
- The "Triangle Structure Problem"
- Feng-Robbin Methods
- Comparison of Methods
- Questions