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(The Guardian 2017, FAZ 2020, NYT 2018)
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Rise in long-term care expenditure

I Belgium: LTC spending (in terms of GDP) increased from 1.7% in 2000

to 2.3% in 2018 (source: Eurostat).

I United Nations projections: The number of elderly people, i.e. older

than 65, is projected to triple from 2020 to 2080 to reach 2.2 billion.

The global share of the elderly population is expected to rise from

9.4% in 2020 to 20.6% in 2080.
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Motivation

A fair, heterogeneous, modular mutual insurance scheme

Modern Life-Care Tontine
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Why pool mortality and morbidity risks?

I People moving into dependency need more money but have a reduced
life expectancy!

=⇒ Natural hedge, diversification!

I Individuals in bad health cannot receive long-term care insurance!

=⇒ Combined product gives access to insurance for a larger
share of the population!

I Cost reduction due to reduced adverse selection!

=⇒ Combined product is attractive for people in bad health...
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Related literature

Mutual (life) insurance schemes gain popularity in academic literature:

I (Natural) tontines: Milevsky, Salisbury [2015, 2016], Chen, Hieber,

Klein [2019], Chen, Hieber, Rach [2020], Chen, Qian, Yang [2021].

(many, many more . . .)

I Pooled annuities, P2P insurance, (tontines): (Sabin [2010]),

Qiao, Sherris [2013], Donnelly, Guillén, Nielsen [2013, 2014],

Denuit [2019]. (many, many more. . .)
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Tontine products and mortality credits

Tontines were popular in the 17th / 18th century but gain popularity today as

modern tontines / pooled annuities / group self annuitization:

I Le Conservateur (France).

I The Tontine Trust: https://tontine.com/#About.

I TIAA-CREF retirement fund (US).

I Lifetimeplus from Mercer (Australia).

Main idea of mortality credits: Survivors gain additional return based on

(1) mortality risk and (2) amount invested.

(e.g. Donnelly, Guillén, Nielsen [2013, 2014], Denuit [2019])
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Modular mutual insurance scheme: Our contribution

I Based on Denuit [2019] (one-period scheme), we introduce a

mutual insurance scheme that is:

1. Able to pool heterogeneous mortality risks (by age, health).

2. Discrete-time.

3. Actuarially fair and fully funded in each period.

4. Modular, flexible: Adding or removing policyholders does
NOT change the AVERAGE payoff of pool members!
(NEW property)

Modularity allows to easily add policyholders fairly! We share the risk, the

average payoff is unaffected by pooling!

I Design a product sharing mortality AND morbidity (long-term care) risk.
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Related literature and “modularity/flexibility”
Usually, the average payoff depends on the other pool members:

I Donnelly, Guillén, Nielsen [2014]:

I Milevsky, Salisbury [2016]:

Problem: Average payoffs are difficult to predict and depend on
other (possibly future) pool members.

We add a (small) death benefit to work around this issue (see later slides)!
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Some notation

I Pool members L0 = {1, 2, ..., n}. Time in periods t = 0, 1, 2, . . ..

I Individual j ∈ L0 contributes single premium cj(0) at time 0.

I Deterministic, risk-free rate δt , t ≥ 0.

I Remaining lifetimes Tj , j ∈ L0, are assumed to be independent.

I Death probability: qxj . Maximal age ω ∈ N.

I Individual account value, fixed payoff sj(t):

cj(t) =

 e
∫ t

t−1 δsdscj(t − 1)− sj(t) , j ∈ Lt

0 , otherwise
(1)
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Mutual insurance: Insurer’s view and actuarial fairness
For each t = 0, 1, . . ., the premium equivalence holds: (pool view)

n∑
j=1

cj(t)︸ ︷︷ ︸
total account values

=
n∑

j=1

ω−xj∑
s=t+1

e−
∫ s

t δuduWj(s)︸ ︷︷ ︸
discounted future benefits individual j

. (2)

I Right hand side: random (big letter!)

I Left hand side: deterministic.

For each t = 0, 1, . . ., the contract is fully-funded: (individual view)

cj(t)︸︷︷︸
retrospective reserve

= Et

[ ω−xj∑
s=t+1

e−
∫ s

t δu duWj(s)

]
︸ ︷︷ ︸

prospective reserve

. (3)
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In case of death, the pool shares the remaining account value

X (t) :=
n∑

j=1

1j∈Dt · e
∫ t

t−1 δsdscj(t − 1) .

An individual j ∈ Lt−1 receives a payoff of:

Wj(t) =


sj(t) + βj

(
X (t)

)
, if j ∈ Lt

βj
(
X (t)

)
, if j ∈ Dt

(4)

decomposed of

– sj(t): individual, fixed withdrawal amount,

– βj
(
X (t)

)
: collective part of the benefits, i.e. the mortality credits.

(Examples for βj : linear (regression) rule / conditional mean risk sharing.)
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Theorem (Backwards iteration)
If an individual j ∈ Lt aims for an average payoff bj(t), the fixed payoff is

given by:

sj(t) =


bj (t)

1+qω−1
, for t = ω − xj

bj (t)−qxj+t−1

ω−xj∑
u=t+1

e−
∫ u
t δsdssj (u)

1+qxj+t−1
, for t = ω − xj − 1, ω − xj − 2, . . . , 1

(5)

We derive the individual’s account value as

cj(t) =
ω−xj∑

u=t+1

e−
∫ u

t δsdssj(u) (6)

and the initial single premium as cj(0).
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Discussion

I The backwards iteration detects the split between fixed payoff sj(t)

and mortality credits βj
(
X (t)

)
that leads to an average payoff of bj(t).

I The backwards iteration can be carried out individually for each j ∈ L0

(modularity / flexibility).

I This allows different age cohorts to share mortality risks in a fair way.
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Life-Care Tontine: semi-Markov model

active (a) dependent (i,z)

dead (d)

1paa
xj

1pai
xj

1pid
xj ;z = q(i)

xj ;z
1pad

xj
= q(a)

xj

z: time spent in dependency.
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Modern Life-Care Tontine

“Natural increase”: French mortality data shows dependent people receive an

a(T (a)) times higher payoff when moving in dependency at time T (a):
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Mortality credits of a dependent person depend on the death probability

q(i)
xj+t−1 > q(a)

xj+t−1.

The product shares mortality and morbidity risk within a pool. We may further

adapt the share a(T (a)) and distribute “morbidity credits”.
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Discussion and conclusion

I It is beneficial to pool mortality and long-term care (morbidity) risks.

I We propose a fair, modular / flexible mututal insurance scheme
(bj(t) for each individual j , we share the risk, the average payment is
unaffected by pooling!).

I We show how this scheme can be adapted to a life-care tontine
introducing the concept of morbidity credits.

I The scheme allows to pool different age cohorts.

I It is fully-funded at all times, allowing individuals to later join
the scheme!
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Thank you!
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Definition (Fair distribution rule: mortality credits)
A fair distribution rule βj

(
X (t)

)
satisfies:

I Self-sufficiency property:
∑

j∈Lt−1
βj
(
X (t)

)
= X (t).

I Positivity property: βj
(
X (t)

)
≥ 0.

I Fairness property:

Et−1
[
βj
(
X (t)

) ]
= Et−1

[
1j∈Dt

]︸ ︷︷ ︸
probability to die in (t − 1, t]

· e
∫ t

t−1 δsdscj(t − 1)︸ ︷︷ ︸
amount at risk at time t

, (7)

where Et := E[ · | Ft ] is an expectation conditional on the information

Ft := σ(Lt).
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Example (Linear risk sharing rule)
At time t , each individual j ∈ Lt−1 receives the mortality credit (respectively

death benefit):

βj
(
X (t)

)
=

qxj+t−1 · cj(t − 1)∑
j∈Lt−1

qxj+t−1 · cj(t − 1)
· X (t) . (8)

(see, e.g., Donnelly, Guillén, Nielsen [2013, 2014], Schumacher [2018]

Example (Linear regression rule)
At time t , each individual j ∈ Lt−1 receives the mortality credit (respectively

death benefit):

βj
(
X (t)

)
= Et−1[Xj(t) ] +

Covt−1[Xj(t),X (t)]
Vart−1[X (t)]

(
X (t)− Et−1[X (t) ]

)
. (9)
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Example (Conditional mean risk sharing rule)
At time t , each individual j ∈ Lt−1 receives the mortality credit (respectively

death benefit):

βj
(
X (t)

)
= Et−1[Xj(t) |X (t) ] . (10)

(see, e.g., Denuit and Dhaene [2012], Denuit [2019])
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Individual j ∈ Lt ’s time-t account value is given by:

cj(t) =
ω−xj∑

u=t+1

e−
∫ u

t δsdssj(u) . (11)

How do we choose sj(u), u = 1, 2, . . . , ω − xj?

For example, choose the average payoff to be constant, equal to bj > 0:

Et−1[Wj(t) | j ∈ Lt ] = Et−1
[
1j∈Lt · sj(t) + 1j∈Lt−1 · βj

(
X (t)

)
| j ∈ Lt

]
= sj(t) + Et−1

[
βj
(
X (t)

)]
= sj(t) + qxj+t−1e

∫ t
t−1 δsdscj(t − 1) !

= bj . (12)

( (12) is a system of equations backwards in time!)
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