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• Several authors have noticed that the speed of mortality decline tends to slow down in younger ages and speed 

up in older ages in the long run.

• Li, Lee and Gerland (2013) call this the ‘rotation’ of the age pattern of mortality decline.

• Possible reasons: 

• less room left for spectacular advances in preventing child mortality (e.g. due to vaccination),

• improved costly medical technology to extend life at older ages.

Introduction
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• Kannisto et al. (1994) find accelerating mortality improvements in ages 80 to 99 years between 1950 and 1989 in 

27 countries.

• Horiuchi and Wilmoth (1995) argue for a shift in mortality decline from younger towards older ages in Sweden.

• Lee and Miller (2001) examine rotation by comparing the average rates of mortality decline by age in the first 

and second halves of the 20th century.

• Carter and Prskawetz (2001) estimate Lee–Carter models on Austrian data using sliding time windows to 

demonstrate the rotation.

• Rau et al. (2008) and Christensen et al. (2009) note that mortality decline in ages 80 years or older has 

accelerated since 1950 in some countries out of 30.

• Vékás (2020) proposes a data-driven measure of rotation and finds evidence for rotation since 1950 in several 

countries of the European Union.

Literature overview
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1. Differences between rotated and unrotated forecasts may be minor in the short run but highly significant in the 

long run!

2. Ignoring rotation leads to the underestimation of the old-age population and overestimation of the young-age 

population.

3. This exacerbates longevity risk in life insurance and pensions valuations, as well as the risk to social security 

systems.

4. In long-term forecasts, it is crucial to assess rotation and to model it appropriately.

Practical significance
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• Human Mortality Database (HMD) provides mortality data for 38 countries  

• Data downloaded as of February 2020
• Used for main work in this talk
• Subsequent data used for assessing impact of COVID-19

• Used mx from HMD in the period 1950-2018 (data shown for USA)

• Partitioned into training, validation and test sets
• Train: 1950 – 1990
• Validation: 1990 – 1999
• Test: 2000 - 2018

• Models fit in two rounds:
• Fit on Train and then tested on Validation – hyperparameter tuning
• Optimal models then fit on Train + Validation and tested on Test set – out of sample performance

Demographic data
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• Original (“vanilla”) Lee−Carter (1992) model:

• As kt declines over time, the coefficients bx determine the rates of improvement by age.

• Age-specific improvement rates are assumed to be independent of time! 

• Rotated variant of Li, Lee and Gerland (2013):

• Improvement rates are weighted means of initial and ultimate values if life expectancy is at least 80 years:

• “Smooth” weights are computed from “raw” weights:

• The authors do not optimize the hyperparameters p (the speed of rotation) and the life expectancy at birth 

where the rotation starts but propose 0.5 and 80 years, respectively.

Lee−Carter model variant incl. rotation
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Rotation of B(x,t) in the rotated variant
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Projection with and without rotation
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• Grid Search on two hyperparameters

𝑝: „speed of rotation” → 0,1 Default is 0.5
𝑒0
𝑙 : life expectancy at birth at which the rotation starts → Default is 80
𝑒0 𝑡 is projected by vanilla Lee-Carter to check against 𝑒0

𝑙

• Parameter space on the Grid Shearch is

0,1 increased by 0.01 for 𝑝
integers in 60,90 for 𝑒0

𝑙

• Technical setup of Grid Search

Training set for parameter estimation is 1950-1990
Validation set for checking hyperparameter performance in 𝑀𝑆𝐸 of 
ln𝑚𝑥,𝑡 is 1991-1999

Selecting 𝑝, 𝑒0
𝑙 that minimize 𝑀𝑆𝐸 of ln𝑚𝑥,𝑡 on validation set

Retraining the model on training + validation set (1950-1999)
Projecting ln𝑚𝑥,𝑡 from the retained model to test set: 2000-

Get test performance as 𝑀𝑆𝐸 of ln𝑚𝑥,𝑡

Multiple optimal hyperparameter settings is possible!
• Separately for male and female populations

Hyperparameter Tuning for Rotated L-C
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Optimal hyperparameters: 𝑝 = 0.99, 𝑒0
𝑙 = 61



• „Vanilla” Lee-Carter formulation

ln𝑚𝑥,𝑡 = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝜀𝑥,𝑡

→ 𝜀𝑥,𝑡~𝑁(0, 𝜎
2) and i.i.d.

• When rotation is present 𝜀𝑥,𝑡~𝑁(0, 𝜎
2) and i.i.d. assumption 

does not hold

𝜀𝑥,𝑡 is still dependent on 𝑥 and 𝑡
𝜀𝑥,𝑡 = f 𝑥, 𝑡 + 𝑢𝑥,𝑡 where 𝑢𝑥,𝑡 has homogeneous 𝜎2 and i.i.d.
f 𝑥, 𝑡 is a function that represents the rotation patterns

• f 𝑥, 𝑡 can be estimated in a GAM framework

f 𝑥, 𝑡 can be decomposed additively as
f 𝑥, 𝑡 = 𝑔1 𝑥 + 𝑔2 𝑡 + ℎ(𝑥, 𝑡)

𝑔1 𝑥 , 𝑔2 𝑡 and ℎ(𝑥, 𝑡) can be represented as spline functions in 
GAMs

• The approach of the mgcv R package by Simon N. Wood is 

considered

GAM on the Lee-Carter residuals
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ℎ(𝑥, 𝑡) fitted on
Spanish female population



• See for 1D spline functions 𝒇(𝒙)s first – basis expansion

𝑓 𝑥 = 

𝑘=1

𝐾

𝛾𝑘𝑏𝑘 𝑥

→ 𝑏𝑘 𝑥 s are usually 3rd degree polinomials (cubic basis function)
→ 𝐾 is an integer hyperparameter called knots
→ 𝐾 should not be too large to avoid overfitting

• Curve fitting – Objective function



𝑖

𝑦𝑖 − 𝑓 𝑥𝑖
2
+ 𝜆න𝑓′′ 𝑥 2𝑑𝑥 → min

𝜆 can be optimized through cross-validation
→ maximize the marginal likelihood (REML)

′′𝑓 𝑥 2𝑑𝑥 is the ‚wiggliness’ penalty

′′𝑓 𝑥 2𝑑𝑥 can be expressed in matrix form: 𝛾𝑇𝑺𝛾 (𝑺 known)

• Objective function can be extended for 2D



𝑖

𝑦𝑖 − 𝑓 𝑥𝑖 , 𝑡𝑖
2
+ 𝜆න𝑓𝑥𝑥

2 + 𝑓𝑥𝑡
2 + 𝑓𝑡𝑡

2𝑑𝑥𝑑𝑡 → min

Repesenting the f 𝑥, 𝑡 s

14

Basis & penalty example
Source: Wood (2017)



• Cubic regression splines ’cr’ and ’cs’

𝑏𝑘 𝑥 s are 3rd degree polinomials
knots spread evenly through the covariate values

• Thin plate regression splines ’tp’

starts from a full spline
→ where number of knots equals the number of observations

takes a reduced rank eigen approximation of this full spline
gets an optimal low rank basis
avoids the knot placement problem this way

• The ’cs’ and ’ts’

special cases for ’cr’ and ’tp’ respectively
extra penalty on the null space in the objective function
get the eigen decomposition of 𝑺 fom 𝛾𝑇𝑺𝛾

define 𝑺∗ = 𝑼∗𝑼∗𝑇 where the matrix of eigenvectors corresponding to the zero eigenvalues of 𝑺
apply the double penalty term 𝜆𝛾𝑇𝑺𝛾 + 𝜆∗𝛾𝑇𝑺∗𝛾 in the objective function
the whole term can therefore be shrunk to zero

Spline fitting methods in mgcv for 2D
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• Grid Search on two hyperparameters

𝑏𝑠: „type of spline” → 𝑐𝑟, 𝑡𝑝, 𝑐𝑠, 𝑡𝑠

𝐾: number of „knots” → 2, 3, 4, 5, 6, 7

some pairs might not be fitted to certain data in reasonable time
→ these points in the grid are omitted

forecasting the L-C residuals is done by extrapolating the basis
functions after the last „knot” along 𝑡

• Technical setup of Grid Search

Same as for Rotated Lee-Carter
Measure of fit is 𝑀𝑆𝐸 of ln𝑚𝑥,𝑡

Training set is 1950-1990
Validation set is 1991-1999
Retraining on 1950-1999
Test set: 2000-

• Separately for male and female populations

Hyperparameter Tuning for GAMs
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Optimal hyperparameters: 𝐾 = 4, 𝑏𝑠 = ′𝑡𝑝′



• Deep = multiple layers

• Feedforward = data travels from left to right

• Fully connected network (FCN) = all neurons in layer 

connected to all neurons in previous layer

• More complicated representations of input data 

learned in hidden layers - subsequent layers 

represent regressions on the variables in hidden 

layers

Deep Feedforward Net
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• Deep neural networks used to predict parameters of Lee-Carter model
• Concept referred to as a hypernetwork by Ha et al. (2016)
• FFNs + country embeddings used here

• Pooling across countries and genders -> better performance than vanilla LC model in some cases, even with 

simple networks

• Applied using convolutional networks in Perla et al. (2021) and Scognamiglio (2021)

• 4 key inputs to network
1. Country
2. Gender 
3. Age
4. Year

• 1-3 treated as categorical using embeddings and 4 treated as continuous input to network

• Basic Lee-Carter network:

Application to Forecasting (1)
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Country Embedding Age Embedding Gender Embedding Time

𝑏𝑥 𝑘𝑡

𝑚𝑥,𝑡 = 𝑒𝑎𝑥+𝑏𝑥.𝑘𝑡



• Previous model allows only for mortality improvement rates (bx) that vary with Country, Age and Gender, but 

not with time.

• Adapt neural nets to allow for time-varying mortality improvement rates (bx,t)

• Boosting = improving previous model by adding new model component, see e.g. Hothorn et al. (2010)

• Fit in two stages:
1. Fit basic Lee-Carter Hypernetwork, then keep parameters 
2. Boost the network using a second network that includes bx,t

Application to Forecasting (2)
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Country Embedding Age Embedding Gender Embedding Time

𝑏𝑥
1 𝑘𝑡

1

𝑚𝑥,𝑡
1 = 𝑒𝑏𝑥

1.𝑘𝑡
1

𝑏𝑥,𝑡
2 𝑘𝑡

2

𝑚𝑥,𝑡
2 = 𝑒𝑏𝑥,𝑡

2 .𝑘𝑡
2

𝑚𝑥,𝑡 = 𝑒𝑎𝑥+𝑏𝑥
1.𝑘𝑡

1+𝑏𝑥,𝑡
2 .𝑘𝑡
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• Well known result in time series literature that averaging over models boosts performance see e.g. Jose and 

Winkler (2008)

• Performance of simple average usually close to optimal

• For stacked model, used simple average of 3 models best performing models:

1. Lee-Carter Hypernetwork - Boosted 
2. Rotated Lee-Carter
3. Lee-Carter - GAM

Stacking
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Performance evaluation (1)



Performance evaluation (2)

Method Number of Wins Percentage of Wins

Lee-Carter - GAM 18 24%

Lee-Carter Hypernetwork - Boosted 16 21%

Rotated Lee-Carter 16 21%

Stacked Models 16 21%

Vanilla Lee-Carter 10 13%

Total 76 100%

• Table shows number of times minimum MSE is 

attained by each method…

• … when considering each country and gender 

separately

• Best method overall is the Lee-Carter – GAM 

method

• Results change when considering for each 

gender

• Strongest single models are the LC boosted with 

neural networks for females and LC boosted 

with GAMs for males

• Stacked models perform optimally for females

Method Female Male

Lee-Carter - GAM 4                              14                                  

Lee-Carter Hypernetwork - Boosted 9                              7                                     

Rotated Lee-Carter 7                              9                                     

Stacked Models 11                            5                                     

Vanilla Lee-Carter 7                              3                                     

Total 38                            38                                  



Spatial Analysis – Best Model for Males
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Spatial Analysis – Best Model for Females

25



Spatial – NN Boost Advantage for Males

26Compared to the best not NN solution – Log Scale

Moran’s I = 0.52*



Spatial – NN Boost Advantage for Females

27Compared to the best not NN solution – Log Scale

Moran’s I = 0.51*
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• Significant gains in forecasting ability by applying more advanced methods than original Lee-Carter model

• Machine learning approach to tuning hyperparameters of Rotated Lee-Carter model proposed here

• New methods demonstrated – boosting a Lee-Carter model using a GAM and a deep neural network

• Benefits of boosting LC with neural nets mainly observed for Eastern European countries

• Next steps:

Demonstrate financial impacts on annuity valuations 
Can we evaluate COVID impacts in the same framework?

Conclusions
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