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Introduction

« Several authors have noticed that the speed of mortality decline tends to slow down in younger ages and speed
up in older ages in the long run.

 Li, Lee and Gerland (2013) call this the ‘rotation’ of the age pattern of mortality decline.

 Possiblereasons:

* less room left for spectacular advances in preventing child mortality (e.g. due to vaccination),

* Improved costly medical technology to extend life at older ages.

mortality improvement rate
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| Iiterature overview

« Kannisto et al. (1994) find accelerating mortality improvements in ages 80 to 99 years between 1950 and 1989 In
27 countries.

 Horiuchi and Wilmoth (1995) argue for a shift in mortality decline from younger towards older ages in Sweden.

« Lee and Miller (2001) examine rotation by comparing the average rates of mortality decline by age in the first
and second halves of the 20th century.

« Carter and Prskawetz (2001) estimate Lee—Carter models on Austrian data using sliding time windows to
demonstrate the rotation.

 Rau et al. (2008) and Christensen et al. (2009) note that mortality decline in ages 80 years or older has
accelerated since 1950 in some countries out of 30.

« Vekas (2020) proposes a data-driven measure of rotation and finds evidence for rotation since 1950 in several
countries of the European Union.



Practical significance

1. Differences between rotated and unrotated forecasts may be minor in the short run but highly significant in the
long run!

2. lgnoring rotation leads to the underestimation of the old-age population and overestimation of the young-age
population.

3. This exacerbates longevity risk in life iInsurance and pensions valuations, as well as the risk to social security
systems.

4. In long-term forecasts, it is crucial to assess rotation and to model it appropriately.
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Demographic data

« Human Mortality Database (HMD) provides mortality data for 38 countries

 Data downloaded as of February 2020
e Used for main work in this talk
* Subsequent data used for assessing impact of COVID-19

« Used mx from HMD in the period 1950-2018 (data shown for USA)

« Partitioned into training, validation and test sets
* TJrain: 1950 - 1990

« Validation: 1990 - 1999

e Jest: 2000 - 2013

 Models fit In two rounds:
 Fit on Train and then tested on Validation - hyperparameter tuning
 Optimal models then fit on Train + Validation and tested on Test set — out of sample performance

— 1950 — 1965 — 1980 — 19495 — 2010
Year — 1955 — 1970 — 1985 —— 2000 — 2015
— 1960 — 1975 — 1990 —— 2005
Female Male

0 25 50 75 100 0 25 50 75 100



| ee—Carter model variant incl. rotation

* Original (“vanilla”) Lee—Carter (1992) model:

* As k, declines over time, the coefficients b, determine the rates of improvement by age.

 Age-specific improvement rates are assumed to be independent of time!

 Rotated variant of LI, Lee and Gerland (2013):
Inmg; = a, + B(x,t)k + €44

 |Improvement rates are weighted means of initial and ultimate values if life expectancy iIs at least 80 years:
B(x,t) = (1 —ws(t))bo(x) + ws(t)by (x)

« “Smooth” weights are computed from “raw” weights:

ws(t) = {0.5 |1 +sin | Z(2w(t) — 1)||}P

en(t)—80
w(t) = ig(;f)—so

« The authors do not optimize the hyperparameters p (the speed of rotation) and the life expectancy at birth
where the rotation starts but propose 0.5 and 80 years, respectively.



Rotation of B(x,t) In the rotated variant

assumed limiting b,
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Logarithmic mortality rate

Projection with and without rotation
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Hyperparameter Tuning for Rotated L-C

Grid Search on two hyperparameters
p: ,speed of rotation” — [0,1] Default is 0.5
el: life expectancy at birth at which the rotation starts — Default is 80
eo(t) is projected by vanilla Lee-Carter to check against e}

« Parameter Space on the Grid Shearch is MSE as a function of p and 0l on Validation Set - Females in Spain
|0,1] increased by 0.01 for p 100~
integers in [60,90] for e

 Technical setup of Grid Search 075-

mse_female_validation
Training set for parameter estimation is 1950-1990 08
0.05
0.04
0.03

Validation set for checking hyperparameter performance in MSE of  aoso-
Inm, ¢ is 1991-1999

Selecting {p, e} } that minimize MSE of Inm, , on validation set

Retraining the model on training + validation set (1950-1999)
Projecting In m, . from the retained model to test set: 2000-

0.25-

0.00 -

Get test performance as MSE of Inm,, 50 70 ) 30 o0
Multiple optimal hyperparameter settings is possible!
« Separately for male and female populations Optimal hyperparameters: {p = 0.99, e; = 61}
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GAM on the Lee-Carter residuals

« ,Vanilla” Lee-Carter formulation
Inm, , = ay, + byky + &4 ¢
— &, +~N(0,0%) and i.i.d.
 When rotation Is present ex,tva(O,aZ) and I.1.d. assumption h(x, t) fitted on
does not hold Spanish female population
& ¢ 1S still dependent on x and ¢
ext = f(x,t) + uy Where u, , has homogeneous o* and i.i.d.
f(x, t) is a function that represents the rotation patterns
* f(x,t) can be estimated in a GAM framework

f(x, t) can be decomposed additively as
f(x,t) = g1(x) + g2(¢) + h(x, t)
g1(x), g, (t) and h(x,t) can be represented as spline functions in
GAMs
 The approach of the mgcv R package by Simon N. Wood Is
considered

1x:t
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Repesenting the f(x, t)s

See for 1D spline functions f(x)s first — basis expansion

K
f(x) = z Vi by (x)
k=1

— b, (x)s are usually 3rd degree polinomials (cubic basis function)

— K is an integer hyperparameter called knots
— K should not be too large to avoid overfitting

Curve fitting — Objective function
Z()’i - f(xi))z + Aff”(x)zdx — min

A can be optimized through cross-validation
— maximize the marginal likelihood (REML)
[ f"(x)*dx is the ,wiggliness’ penalty
| f"(x)*dx can be expressed in matrix form: y’ Sy (S known)

Objective function can be extended for 2D

2(3’1‘ — f(x;, ti))z + Affxzx + f.5 + f4dxdt > min
l

00 02 04 06 08 1.0

-2 0 2 4 6 8 10

basis functions

-2 0 2 4 6 8 10

-2 0 2 4 6 8 10

Basis & penalty example
Source: Wood (2017)




Spline fitting methods in mgcyv for 2D

 Cubic regression splines ’cr’and ’cs’
b, (x)s are 3rd degree polinomials
knots spread evenly through the covariate values

 Thin plate regression splines ’'tp’
starts from a full spline
— where number of knots equals the number of observations
takes a reduced rank eigen approximation of this full spline
gets an optimal low rank basis
avoids the knot placement problem this way
* The’cs’and’ts’
special cases for 'cr’ and 'tp’ respectively
extra penalty on the null space in the objective function
get the eigen decomposition of S fom y'Sy
define $* = U*U*" where the matrix of eigenvectors corresponding to the zero eigenvalues of S
apply the double penalty term 1y 'Sy + A*y$*y in the objective function
the whole term can therefore be shrunk to zero
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Hyperparameter Tuning for GAMs

Grid Search on two hyperparameters
bs: ,type of spline” — {cr, tp, cs, ts}
K: number of ,knots” - {2, 3,4,5, 6,7}
some pairs might not be fitted to certain data in reasonable time
— these points in the grid are omitted

forecasting the L-C residuals is done by extrapolating the basis
functions after the last ,knot” along t

Technical setup of Grid Search
Same as for Rotated Lee-Carter
Measure of fit is MSE of Inm,,
Training set is 1950-1990
Validation set is 1991-1999
Retraining on 1950-1999
Test set: 2000-

« Separately for male and female populations

MSE as a function of k and bs on Validation Set - Males in Spain

mse_male_validation

0.12

0.10

k_base

0.08

cr Cs tp ts
basis _form

Optimal hyperparameters: {K = 4, bs = "tp'}
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Deep Feedforward Net

 Deep = multiple layers

 Feedforward = data travels from left to right

kY iy Ty
.'__.:l::.-' S5
o
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* Fully connected network (FCN) = all neurons in layer
connected to all neurons in previous layer

« More complicated representations of input data
learned In hidden layers - subsequent layers
represent regressions on the variables in hidden
layers
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Application to Forecasting (1)

Deep neural networks used to predict parameters of Lee-Carter model

 Concept referred to as a hypernetwork by Ha et al. (2016)

 FFENs + country embeddings used here
Pooling across countries and genders -> better performance than vanilla LC model in some cases, even with

simple networks
Applied using convolutional networks in Perla et al. (2021) and Scognamiglio (2021)

4 Kkey Inputs to network

1. Country
2. Gender
3. Age

4. Year
1-3 treated as categorical using embeddings and 4 treated as continuous input to network

e Basic Lee-Carter network:
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Application to Forecasting (2)

 Previous model allows only for mortality improvement rates (bx) that vary with Country, Age and Gender, but
not with time.
 Adapt neural nets to allow for time-varying mortality improvement rates (bx,t)

« Boosting = improving previous model by adding new model component, see e.g. Hothorn et al. (2010)
 Fitin two stages:

1. Fit basic Lee-Carter Hypernetwork, then keep parameters
2. Boost the network using a second network that includes b,

2 _ _bZ%.k?
mx,t = e x,C-"™t

ay+bg.ki+bg ki

My =€

19



Stacking

Well known result in time series literature that averaging over models boosts performance see e.g. Jose and
Winkler (2008)

Performance of simple average usually close to optimal

For stacked model, used simple average of 3 models best performing models:

1. Lee-Carter Hypernetwork - Boosted
2. Rotated Lee-Carter
3. Lee-Carter - GAM

20
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Performance evaluation (1)

Stacked Models

Lee—Carter Hypermetwork — Boosted

Rotated Lee—Carter

Lee—Carter - GAM

Method

Vanilla Lee-Carter

Lee-Carter Hypernetwork
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Performance evaluation (2)

Table shows number of times minimum MSE iIs

attained by each method... Method
Lee-Carter - GAM

Lee-Carter Hypernetwork - Boosted

... When considering each country and gender

separately Rotated Lee-Carter
Stacked Models

Best method overall is the Lee-Carter — GAM Vanilla Lee-Carter

method Total

Method

Results change when considering for each
Lee-Carter - GAM

gender
Lee-Carter Hypernetwork - Boosted
_ _ Rotated Lee-Carter
Strongest single models are the LC boosted with Stacked Models
neural networks for females and LC boosted Vanilla Lee-Carter
with GAMs for males Total

Stacked models perform optimally for females

Number of Wins Percentage of Wins

13
16
16
16
10

16

Female

11

38

24%
21%
21%
21%
13%
100%

Male

14

38



Spatial Analysis — Best Model for Males

LC_SVD_Male
LCwithGAM_Male
NN_Boost Male
No Data
RotatedLC_Male
Stacked Male




Spatial Analysis — Best Model for Females

LC SVD Female
LCwithGAM Female
NN _Boost Female
Mo Data
RotatedLC_Female
Stacked Female
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Spatial — NN Boost Advantage for Males

Moran's | = 0.52*

Log_NN_boost advantage in MSE - male

-2.4
-2.2
-2.0

--1.6
--1.6

-1.4
-1.2

Compared to the best not NN solution - Log Scale 26




Spatial — NN Boost Advantage for Females

Moran's| = 0.51*

Log NN boost advantage in MSE - Female

-2.4
-2.2
-2.0

--1.8

-1.6
-1.4
-1.2

Compared to the best not NN solution - Log Scale
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Conclusions

« Significant gains in forecasting ability by applying more advanced methods than original Lee-Carter model
« Machine learning approach to tuning hyperparameters of Rotated Lee-Carter model proposed here

* New methods demonstrated — boosting a Lee-Carter model using a GAM and a deep neural network
 Benefits of boosting LC with neural nets mainly observed for Eastern European countries

 Next steps:

Demonstrate financial impacts on annuity valuations
Can we evaluate COVID impacts in the same framework?
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