Part 1 - Introduction and overview

Deep Neural Networks (DNNs) in Life Insurance o[T1S({

« Al and machine learning are already reality in the insurance world.

- So far, however, there have been no productive applications of machine learning in the
core life insurance business, for example the calculation of tariff premiums or reserves.

- Before we start, | would like to say something about the history of deep neural networks.

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 2

Deep Neural Networks o[T1S({

History

« Inventors have long dreamed of creating machines that think. This desire dates back to at least the time of
ancient Greece (think of Daedalus and others).

* Deep learning has a long history and has gone by many names and changing popularity.

» Deep learning models have grown in size over time as computer infrastructure (both hardware and software) has
improved.

» Deep learning has solved increasingly complicated applications with increasing accuracy over time.
« There have been three important waves of development of deep learning (using different names):
* Cybernetics in the 1940s -1960s,
« Connectionism or parallel distributed processing the 1980s -1990s

* And the current development under the name deep learning beginning in 2006

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 3

Deep Neural Networks o[T1S({

Learning from neuroscience?

« Some of the earliest learning algorithms we recognize today were intended to be computational models of
biological learning, that is, models of how learning happens or could happen in the brain.

* As aresult, one of the names that deep learning has gone by is artificial neural networks (ANNs).
« The modern term “deep learning” goes beyond the neuroscientific perspective.

» It appeals to a more general principle of learning multiple levels of composition, which can be applied in machine
learning frameworks that are not necessarily neurally inspired.

* The earliest predecessors of modern deep learning were simple linear models motivated from a neuroscientific
perspective.

* The McCulloch-Pitts neuron (McCulloch and Pitts, 1943) was an early model of brain function. This linear model
could recognize two different categories of inputs.

» Today, neuroscience is regarded as an important source of inspiration for deep learning, but it is no longer
predominant.

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 4

DNNs in Life Insurance o[T1S({

L i f e

Universal Approximation Theorem / Regression

« We consider neural networks as a functional approximation.

» The goal is to approximate some function f*. A network defines a mapping y=f(x;0) and learns the
value of the parameters 0 that result in the best function approximation.

« The Universal Approximation Theorem provides the theoretical basis for this.
* The theorem was first proved in 1989 for a NN with sigmoid activation functions
» and then in 1991 for NNs with arbitrary non-linear activation functions.

* |t states that any continuous function on compact subsets of R™ can be approximated to an arbitrary
degree of accuracy by a feedforward NN with at least one hidden layer with a finite number of units
and a non-linear activation.

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 5

L i f e

Applying DNNs in Life Insurance o[T1S({

Universal Approximation Theorem / Regression

» Obviously, there are many possibilities to use DNNs in life insurance

» Taking into account the business case and the general conditions migration seems to be a very
interesting field

» Migration deals with knowledge that is depicted in old (source-)systems, learning this knowledge and
transferring it to a new (target-)system.

» This is an ideal situation for supervised learning.

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 6

Introduction to DNNs o[T1S({

Neurons - Repeat what we have learned already

Neurons are mathematical functions that can be defined as follows:
n
y=£C) xw; +b)
i=1

» vy is the output of the neuron. It is a single value.

« fis a non-linear differentiable activation function. The activation function is the source of non-
linearity in a NN—if the NN was entirely linear, it would only be able to approximate other linear
functions.

« The argument of the activation function is the weighted sum (with weights w;) of all the neuron
inputs x; (n total inputs) and the bias weight b. The inputs x; can be either the data input values or
outputs of other neurons.

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 7

Introduction to DNNs o[T1S({

Activation Functions

Sigmoid: Its output is bounded between 0 and 1 and can be interpreted stochastically as the probability of the neuron activating. Because
of these properties, the sigmoid was the most popular activation function for a long time. However, it also has some less desirable
properties (more on that later), which led to its decline in popularity. The following diagram shows the sigmoid formula, its derivative, and
their graphs (the derivative will be useful when we discuss backpropagation):

1.00
0.75 4

% 050 flx) =0(x) = 5=
0.25 f'(x) = a(x)(1 = o(x))
0.00 -

-10 -5]] 10 x

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 8

Introduction to DNNs o[T1S({

Activation Functions

*LU: family of functions (LU stands for linear unit). We'll start with the rectified linear unit (ReLU), which was first
successfully used in 2011. The following diagram shows the ReLU formula, its derivative, and their graphs:

L0 _[zifz>0
" T\ oifz<0
‘_;0.6—
T 04 lifz >0
0.2 1 —_—
0if z < 0
D.O—I

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 9

g

e

NS

Architecture

Supervised Learning: Regression with one unit in the Output-Layer

DNNs in Life Insurance

Hidden Layers

-
>
(@l
-
-

o

(

N
.&&V/&‘X\ 5%
b aV%%N”% V‘)Av A‘

A /,“ N
‘ \

N
w&&z

{

s
RO
32

NI

Input

10

Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe ©

16.7.2020

DNNs in Life Insurance: Quality and Trustworthiness o[T1S0

* For the training of DNNs, it is important to separate a training set from a test set (to control quality).
* The quality measures that are used are relevant.
» For life insurance values like tariff premiums or reserves, relative and absolute deviations are important.

* The measure can refer to a single test case, a set of test cases (a batch), or the entirety of the training
data.

* The resulting distributions can also be specified.

 If the trained NNs are used productively in a target system, both the set of parameters for a call and the
set of all possible call sets are finite, but too large to actually memorize them.

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 11

DNNs in Life Insurance: Quality and Trustworthiness o[T1S0

Quality is a measure for the deviations on the basis of the finite test data.

An € > 0 is specified. The model is then tuned or (automatically) supplied with further training data until
the desired quality is achieved (or the process stops).

Trustworthiness deals with statistical generalization.

It measures the probability 1 - d with which a predetermined quality is achieved in reality, that is with input
data unknown during the training.

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 12

DNNs in Life Insurance: Performance and Technology /1150

- The performance of trained DNNs calculating actuarial values is very good (in the millisecond range) and mostly as
good as the performance of conventional programs.

* Which technologies do we use:
« Python and jupyter notebooks (during training and documentation)
« TensorFlow 2.x
* Keras
« Random Forest

- Java (in productive environments)

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 13

DNNs at work: A demonstration o[T1S({

Training a DNN and calculate Tariff-Premiums

Method:
» Use of a specialized DNN: Supervised Learning

» trained with a policy adminstation system (here: msg.Life Factory)
Training Set: 100.000 calculated standard life insurance death benefit contracts

Benchmark: The tariff premium calculated by the DNN should not deviate more than 0.5% from the real contribution

Loss-Function: MSE (mean squared error).

The demo is run on a normal private computer.

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 14

DNNs at work: A demonstration

| first open a terminal window. In the ML environment under Anaconda / Python | start I I Sg
a jupyter notebook that contains the application and some additional information Lt
(html / Tex).

@ ¥4 axelhelmert — -zsh — 90x16

Last login: Sun Jul 19 14:47:19 on ttys000
| (base) axelhelmert@x86_64-apple-darwinl3 ~ % ./jup.sh_

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe ©

DNNs at work: A demonstration

The first page / cell (here html) of the jupyter notebook with some explanations about the demo. I-nS
: .l i f e g

Tariff-Premium_072020 - Jupyter Notebook

Al-based Migration omsg

Calculating the Tariff-Premium of a Death-Benefit policy.

We use standard New-Business Input Data.

1. Reading and preprocessing data

2. Create, train and test a simple (and bad) DNN

3. Load a more complex but satisfying neural net

4, Execute the trained net and compare the results with Life Factory

’ Axel Helmert, July 2020, © msg life ce gmbh Page 1 . >

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe © 16

localhost

)20 - Jupyter Notebook mlins/ / Tariff-Premium_072020 - Jupyter Notebook

Al-based Migration omsg

Read Data for Training and Testing.

In [1]: import warnings

warnings.filterwarnings('ignore')

import numpy as np
import pandas as pd
from mlins.Tarife import preproc_Tarif_RI_2017

df = pd.read_csv("../../data/Tarife/Tarifierung_RI2017_large_Set.csv",sep=";",header="'infer"')
df.shape

LCoo~NoOOU s WNERE

Out[1]: (100000, 10)

Al-based Migration

Show input data before preprocessing.

This is a typical input for a policy administration system.

In [2]: 1 df.head(4)

localhost

Tariff-Premium

Outl2]: Beginnjahr Beginnmonat Zahlweiselnkasso GeschlechtVP1 RauchertypVP1 x n t Leistung tba
0 2019 12 JAEHRLICH WEIBLICH RAUCHEN 55 4 1 23429119 13893.98
1 2018 10 MONATLICH WEIBLICH NICHTRAUCHEN 53 13 10 365664.56 4995.25
2 2017 5 MONATLICH MAENNLICH NICHTRAUCHEN 50 2 1 754477.74 8581.78
3 2017 1 JAEHRLICH WEIBLICH RAUCHEN 29 20 6 354704.35 448104

Tariff-Premium_072020 - Jupyter Notebook

L=

localhost

Tariff-Premium

Prepocessing (1/2)

In [3]:

1 from
2 from
3 from
4 from
5 from

sklearn.pipeline import Pipeline

sklearn.compose import ColumnTransformer

sklearn.preprocessing import StandardScaler, FunctionTransformer
sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
sklearn.model_selection import train_test_split

Tariff-Premium_072020 - Jupyter Notebook

localhost

Tariff-Premium_072020 - Jupyter N ol mlin 00 emo/ Tariff-Premium_072020 - Jupyter Notebook

Prepocessing (2/2)

In [4]:

X_data
y_data

df.drop(["tbha"], axis=1)
df ["tba"]

il

2

3

4 cat_columns=["'ZahlweiseInkasso', 'GeschlechtVP1', 'RauchertypVP1']
5 num_columns=1ist(X_data.drop(cat_columns,axis=1).columns)
6
7
8

X_data[num_columns]=X_data[num_columns].astype("float64")
9 scaler=StandardScaler()

10 num_pipeline=Pipeline([('scaler',scaler)])
11 cat_pipeline = Pipeline([('onehot',OneHotEncoder())])

12

13 data_preproc_pipeline = ColumnTransformer([

14 ('cat_values',cat_pipeline,cat_columns),

15 ('num_values',num_pipeline, num_columns)

16 1)

1

18 X_train_raw, X_test_raw, y_train, y_test = train_test_split(X_data, y_data, test_size=0.2, random_state=1)
19

20 data_preproc_pipeline.fit(X_train_raw,y_train)

21 feature_names = list(data_preproc_pipeline.named_transformers_["cat_values"].named_steps["onehot"].get_feature_names()) \
22 + data_preproc_pipeline.transformers_[1][2]

23

24 X_train = pd.DataFrame(data_preproc_pipeline.transform(X_train_raw),columns=feature_names)

25 X_test = pd.DataFrame(data_preproc_pipeline.transform(X_test_raw),columns=feature_names)

localhost

Tariff-Premiun Jupy Notebook Tariff-Premium_072020 - Jupyter Notebook

Input-Data after Preprocessing:

In [5]: 1 X_train.head(6)

outlsl: x0_HALBJAEHRLICH x0_JAEHRLICH x0_MONATLICH x0_VIERTELJAEHRLICH x1 MAENNLICH x1 WEIBLICH x2 NICHTRAUCHEN x2 RAUCHEN Beginnjahr Beginnmonat X n t Leistung
0 10 0.0 0.0 0.0 10 0.0 10 0.0 1.223756 1592147 -0.723340 -0.190226 -0.477409 -1.395603
1 00 0.0 0.0 10 0.0 1.0 1.0 0.0 -0.002099 0.723194 -1.125855 -0.378880 0.341132 -0.026540
2 00 0.0 1.0 0.0 0.0 1.0 0.0 10 1223756 0.433543 0.967220 -0.850515 -0.886680 1.219385
3 00 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1223756 0723194 0.806214 -0.095899 -0.068138 1.387470
4 00 0.0 10 0.0 10 0.0 0.0 10 -0.002099 -1.014713 0.645208 -0.190226 -0.340986 -1.244856
5 10 0.0 0.0 0.0 0.0 1.0 0.0 10 -0.002099 -0.435411 -0.481832 0.187082 0.341132 -0.872374

Topsites

localhost

tebooks/Demo/ Tariff-Premium_0

Create Model (1/2)

In [6]:

1
2
3
4
5
6
7
8

from keras.models import Sequential

from keras.layers import Dense, Activation, advanced_activations, Dropout
from keras import backend as K

from keras import optimizers

from keras import losses

import mlins.metrics as M
import mlins.evaluation as evaluation

Using TensorFlow backend.

Jupyter Notebook

Tariff-Premium_072020 - Jupyter Notebook

localhost

Tariff-Premium_072020 boo ull no/ Tariff-Premium_072020 - Jupyter Notebook

Create Model (2/2)

In [7]: 1 def create_dnn(act_func_1='relu', act_func_2='linear', hidden_layer_size=40,
2 hidden_layer_num=10, 1r=0.0001, loss_func=M.K_mean_squared_relative_error,
3 alpha=1.0, input_size=14, dropout_rate=0.0, dropout_rate_inp=0.0):
4
5 model = Sequential()
6 if act_func_1=='elu':
7 act = advanced_activations.ELU(alpha=alpha)
8 else:
9 act = Activation(act_func_1)
10
1 # first layer
12 model.add(Dense(units=hidden_layer_size, input_shape=(input_size,)))
13 model.add(act)
14 if dropout_rate_inp: model.add(Dropout(dropout_rate_inp))
1163 # all other hidden layers
16 for i in range(hidden_layer_num - 1):
17 model.add(Dense(units=hidden_layer_size, activation=act_func_1))
18 model.add(act)
19 if dropout_rate: model.add(Dropout(dropout_rate))
20
21 # final layer
22 model.add(Dense(1, activation=act_func_2))
23
24 model. compile(loss=1loss_func,
25 optimizer=optimizers.Adam(1lr=1r),
26 metrics=[losses.mean_squared_error, M.K_max_relative_error, M.K_relative_error_percentage, M.K_mean_squared_relative_error])
27
28 return model

localhost
Tariff-Premium_072020 - Jupyter Notebook

Tariff-Premium

Model Training

In [8]: 1 model = create_dnn()
2 %time hist = model.fit(X_train, y_train, batch_size=2000, epochs = 50, verbose=0)

CPU times: user 20.4 s, sys: 4.08 s, total: 24.5 s
wWall time: 12 s

101>

localhost

Topsites mili of Tariff-Premiurr 02 Jupy K mlins/| / | Tariff-Premium_072020 - Jupyter Notebook

Model Evaluation

on test set

In [9]: 1 import mlins.evaluation as evaluation
2
3 y_test_pred = model.predict(X_test)
4 metrics_test_single = evaluation.get_metrics_Tarifierung(y_test, y_test_pred.ravel(), verbose=1)

Model Evaluation Metrics

Metric Value

mean squared error 238117600.2100
mean squared relative error 0.3895

max absolute error 211134.1561
max relative error 15.1902

perc. of abs. error above 1 0.9995

perc. of abs. error above 0.1 1.0000
perc. of abs. error above 0.01 1.0000
perc. of rel. error above 0.1 0.9116

perc. of rel. error above 0.05 0.9560

perc. of rel. error above 0.01 0.9913

? "

localhost

Tariff-Premium_072020 - Jupyter Notebook

Tariff-Premium_072020 - Jupyte

3. Load and test a better DNN

This model consists of an ensemble of DNNSs. It has been improved by several measures and delivers a much better result. Nevertheless is
has the same dataset. In addition, training of data is faster.

In [1@]: 1 import mlins.lifeFactoryModel as 1fm

2
3 1lfmodel = 1fm.LifeFactoryModel.LoadLifeFactoryModel('../Schnittstelle/LFModel_RI_2017_KI.zip')

INFO: LOADING LIFE FACTORY MODEL RI_2017_KI SUCCESSFUL

121>

In [11]:

localhost

Tariff-Premium_0

1 X_data = df

2 X_data = X_data.drop(['Beginnmonat', 'Beginnjahr','GeschlechtVP1'],axis=1)

3 y_data = X_datal'tba']

4 _, X test_ens, _, y_test_ens = train_test_split(X_ data, y_data, test_size=0.2, random_state=1)
5 df_leistung_ens = X_test_ens['Leistung']/1le6

6 X_test_ens = X_test_ens.drop(['Leistung'],axis=1)

7

8 y_test_ens_pred = 1fmodel.predict('Tha', X_test_ens) * df_leistung_ens

9

10 metrics_test_ens = evaluation.get_metrics_Tarifierung(y_test_ens, y_test_ens_pred.ravel(), verbose=0)
11 from mlins.evaluation import display_metrics_from_dict

12

13 my_metrics = {"optimiertes Ensemble": metrics_test_ens,"Einfaches Model": metrics_test_single}

14 all_metrics = display_metrics_from dict(metrics=my_metrics)

Evaluation Metrics Comparison

Metric optimiertes Ensemble Einfaches Model
mean squared error 67.509896 238117600.210009
mean squared relative error 0.000000 0.389541

max absolute error 437.962959 211134.156094
max relative error 0.002925 15.190235

perc. of abs. error above 1 0.267950 0.999500

perc. of abs. error above 0.1 0.399950 1.000000

perc. of abs. error above 0.01 0.534500 1.000000

perc. of rel. error above 0.1 0.000000 0.911650

perc. of rel. error above 0.05 0.000000 0.956000

perc. of rel. error above 0.01 0.000000 0.991300

]

mlins/noteb:

Tariff-Premium_072020 - Jupyter Notebook

13|>

Conclusions and Outlooks
Next steps

« Improve active learning, AutoML and the use of pipelines

« Continue the discussion with the financial market's supervisory authorities

Part Il: Volker Dietz will give you deeper insights into the models

16.7.2020 Axel Helmert, Applying DNNs in Life Insurance - Part 1 - msg life central europe ©

M5

28

Thank you for
your attention.

CONTACT
Axel Helmert

Axel.helmert@msg-life.com

mailto:Axel.helmert@msg-life.com

