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Abstract

This paper proposes a principal-agent framework to study the optimal transfer

of longevity risk between a reinsurer and a hedger under information asymmetry.

Most hedgers, such as a defined-benefit pension plan or a life insurer, in the real

world have rather small portfolios, the liabilities of which are hard to be accurately

estimated by the reinsurer. Using indemnity longevity swaps as an example of

reinsurance products, we derive the analytical solution to the optimal risk premiums

and incentive-compatible hedge demands in a separating equilibrium and examine

the conditions for the existence of the separating equilibrium. The theoretical

results are evaluated using real-world mortality data in extensive empirical analyses.
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the adverse selection issue in longevity risk transfer is appropriately addressed.
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1 Introduction

In the past few decades, unprecedented rise in human life expectancy has been wit-

nessed. While it is per se a very pleasant development, the increasing life expectancy has

led to a sequence of societal problems related to longevity risk, i.e. the risk that people

live longer than expected. In particular, the increasing uncertainty surrounding future

longevity forecasts has made the liability risk management for life insurers and pension

funds all around the world more challenging. The rapid increase in longevity risk has also

a huge impact on the global longevity risk transfer market over the past 15 years. As

the most important sector of the longevity risk transfer market, the reinsurance industry

has insured £300 billion of liabilities from defined benefit (DB) pension schemes in UK

alone since the pension risk transfer market took off in 2007, and expects to insure an

additional £700 billion of liabilities by the end of 2031, resulting in £1 trillion of DB

pension scheme liabilities, which is around 50% of the total (Blake & Cairns, 2021). The

majority of hedgers (such as a defined-benefit pension plan or a life insurer) around the

world have a small portfolio, in which asymmetric information between the reinsurer and

hedgers is likely to arise as the hedgers have more precise information about their own

liability processes. This paper proposes a principal-agent framework to study the optimal

longevity risk reinsurance decision between a reinsurer and a hedger taking account of

the information asymmetry.

As one of the most studied classical economic problems, information asymmetry and

the resultant adverse selection of the agents have been widely discussed in the insurance

market between insurers and individuals. For example, in their seminal work, Rothschild

& Stiglitz (1978) lay the theoretical foundation of the market equilibrium between an

insurer and individuals under information asymmetry. Specifically, they characterize a

self-selecting, separating equilibrium between the insurer and two types (high-risk and

low-risk) of individuals, in which both the prices and the quantities of insurance are

specified for both types. The conditions under which the separating equilibrium exists

are also discussed. The adverse selection issue has later been empirically evaluated in
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different fields of insurance, including general insurance (Cohen & Siegelman, 2010), au-

tomobile insurance (Puelz & Snow, 1994; Dionne et al., 2001), long-term care (Sloan &

Norton, 1997), health insurance (Cutler & Zeckhauser, 1998; Cutler & Reber, 1998), and

agriculture insurance (Makki & Somwaru, 2001), just to name a few.

When it comes to the annuity market, abundant literature has discussed the issue of

adverse selection at policyholder level, i.e., healthier people are more likely to purchase

annuities (see, among many others, Davies & Kuhn, 1992; Finkelstein & Poterba, 2004;

McCarthy & Mitchell, 2010; Fong et al., 2011; Hosseini, 2015; Heijdra et al., 2019). How-

ever, adverse selection related to longevity risk has not yet been touched upon in the

context of reinsurance, i.e., the risk transfer between insurance and reinsurance compa-

nies, by the existing literature. Although there have been plenty of studies on longevity

risk transfer at institutional level (see, for example, Wills & Sherris, 2010; Coughlan

et al., 2011; Cairns, 2013; Blake et al., 2014; Li et al., 2017; Blake et al., 2019), it is

typically assumed that all parties have symmetric information about the longevity risk

of the hedgers (the pension plans or the life insurers).1 While the perfect information as-

sumption might be somewhat justified for very large portfolios, the mortality experiences

of which are more stable and predictable, it is likely to be improper for hedgers with

small or new portfolios. Specifically, as the historical mortality data of such portfolios

are shorter and/or noisier, it is rather difficult for the reinsurer to select the “correct”

mortality model that captures the real underlying mortality patterns. In such cases, the

hedger may have better knowledge of the future mortality of its policyholders, which

results in information asymmetry between the hedger and the reinsurer. The potential

consequences of adverse selection in the longevity risk reinsurance market is not negligi-

ble, as so far the majority of hedgers all around the world have a small portfolio. Taking

the US for example, in 2019, there were in total 46,370 private DB pension plans in the

US, and 39,586 of them had fewer than 100 participants (United States Department of

1There are a few studies, such as Cairns (2013) and Li et al. (2017), which assume that the true
mortality law of the hedgers is not known, but their focus is on model risk rather than information
asymmetry.
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Labor, 2021). Therefore, adverse selection may harm the profitability of the longevity

risk reinsurance business, or even result in financial losses for the reinsurer, and conse-

quently hinder the development of the global longevity reinsurance market.

In this paper, we utilize the principal-agent framework proposed by Rothschild & Stiglitz

(1978) to consider longevity risk reinsurance between a reinsurer (principal) and a hedger

(agent) under information asymmetry. The hedger can be either a low- or a high-risk type

with exogenous probabilities. The reinsurer offers two types of longevity risk reinsurance

products tailor-made for each risk type, and determines the optimal prices and quantities

of both products that maximize its expected profit. A set of participation and incentive

constraints is imposed to ensure that both risk types will participate in the reinsurance

market and reveal their real types. In this paper, we use the indemnity longevity swaps

as an example of the reinsurance products. As an innovative longevity risk hedging in-

strument, indemnity longevity swaps involve periodic exchanges of cash flows between

the hedger and the reinsurer. The cash flows are linked to the mortality experience of the

hedger’s portfolio, and could mitigate or eliminate the hedger’s longevity risk. In con-

trast to traditional reinsurance products, such as pension buy-in (also known as the bulk

annuity) or buy-out,2 which cover all risks of the hedger’s portfolio (including investment

risks and operation risks, etc), indemnity longevity swaps only focus on the transfer of

longevity risk, and thus could be much cheaper for the hedger. Due to its cost efficiency,

indemnity longevity swap has gained substantial popularity in the global longevity risk

transfer market in the past decade (Blake & Cairns, 2021). Using the longevity swaps,

analytical solution in the separating equilibrium, as well as the conditions under which

the equilibrium exists, are derived. Consistent with the findings in Rothschild & Stiglitz

(1978), the high-risk type hedger always entails a complete hedge while the low-risk type

opts for a partial hedge. Moreover, the equilibrium price of the swap for the high-risk

type is lower than the price under perfect information, while the opposite is true for the

low-risk type. This indicates that the high-risk type is subsidized by the low-risk type in

2For more discussions of buy-in and buy-out, we refer to De Ferrars (2009) and Cox et al. (2018).
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the presence of information asymmetry.

The theoretical results of the separating equilibrium are supplemented with extensive em-

pirical analyses using real-world mortality data and a sophisticated mortality model. In

particular, the mortality data of England from 1956 to 2016 are fitted to the Age-Period-

Cohort-Improvement mortality model, which is used by the CMI3 mortality projections

committee to generate life tables for UK life insurers and pension funds. Using the sim-

ulated future survival probabilities from the fitted model, we evaluate the optimal prices

and quantities of the longevity swaps under two representative scenarios, under which the

outstanding liability of the high-risk type is higher in expectation and/or more volatile

than that of the low-risk type. Further, we compare the separating equilibrium contracts

with two extreme situations: the first-best situation in which the reinsurer has perfect

information about the hedger’s type, and a Stackelberg game in which the reinsurer does

not address the adverse selection issue and simply offers a single longevity swap to both

types. We find that, while the separating equilibrium contracts lead to only slightly lower

expected profit for the reinsurer than the first-best solution, they result in a distribution

of profit substantially higher in mean and all percentiles (e.g., the 0.5% percentile)4 than

the case in which adverse selection is not addressed. All in all, our analyses suggest that

taking the potential information asymmetry and adverse selection into account could sub-

stantially improve the profitability and meanwhile reduce the uncertainty of the longevity

risk reinsurance business for the reinsurer.

The contribution of this paper is three-fold. First, this paper fills the gap between the

literature of adverse selection and longevity risk reinsurance. The analytical equilibrium

solution provides a convenient way to evaluate the impact of information asymmetry on

the optimal prices and quantities of the longevity swaps. Furthermore, the equilibrium

3CMI (Continuous Mortality Investigation) is an organization supported by the Institute
and Faculty of Actuaries in UK. Source: https://www.actuaries.org.uk/learn-and-develop/

continuous-mortality-investigation/about-cmi.
4The 0.5% percentile is a key statistics in (re)insurance solvency capital management under the new

international solvency and accounting regulations, such as Solvency II and IFRS 17 (England et al.,
2019).

https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/about-cmi
https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/about-cmi
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pricing formulas shed light on the longevity risk pricing problem, which is itself a hot

topic in the literature (see, for example, Denuit et al., 2007; Wills & Sherris, 2010; Leung

et al., 2018; Xu et al., 2020, and the references therein). The equilibrium pricing for-

mulas also allow for straightforward analysis of the impact of different characteristics of

the hedger’s portfolio on the price of the swaps under information asymmetry. Second,

our analysis provides conditions under which the longevity swap market exists under

information asymmetry. In particular, we find that the market will break down when

the high-risk type’s liability is substantially higher in expectation and/or substantially

more volatile than that of the low-risk type. This finding could be valuable for real-world

reinsurers operating in or planning to enter the longevity transfer market. It also indi-

cates the importance of mitigating information asymmetry to the further development

of the longevity risk transfer market. Finally, in contrast to most of the existing insur-

ance studies of adverse selection, which are either purely theoretical or empirical, this

paper combines a theoretical analysis of optimal longevity risk transfer problem with ex-

tensive empirical analyses using real-world mortality data and a realistic mortality model.

Finally, we remark that although the indemnity longevity swap is chosen as an illustra-

tion, the proposed framework can be applied in a straightforward manner to a variety

of longevity hedging instruments, including the widely-used pension buy-out and bulk

annuity, as well as the index-based longevity-linked securities, which is a rather hot topic

in the recent literature of longevity risk management.5

The remainder of this paper is organized as follows. Section 2 introduces the prelimi-

naries. Section 3 describes the principal-agent framework and discusses the equilibrium

contracts in their general forms and under two representative scenarios. Section 4 in-

troduces the mortality data and model, and discusses the numerical analyses. Finally,

5The index-based longevity-linked securities provide payments linked to public indices rather than
the mortality experience of individual portfolios. Theoretically, they could be treated as a class of
standardized products that can be traded in the secondary market. This class of securities is rather new
and exists mostly in theory so far. For more discussions on such securities, see, among many others,
Blake et al. (2006); Coughlan et al. (2007); Dawson et al. (2010); Cairns et al. (2014); Li (2018); Li et al.
(2019); Li & Luo (2012).
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Section 5 concludes. Proofs and graphical illustrations of the mortality data and model

are summarized in the appendix.

2 Preliminaries

In this section, we introduce the preliminaries and consider how a contract on an in-

demnity longevity swap can be arranged between a reinsurer (swap seller) and a hedger

(swap buyer). For ease of exposition, we assume that the hedger is a life insurer selling

only life annuities with a stream of in-arrears fixed unitary payments to lx policyholders.

All policyholders belong to the same cohort with age x in year 0, with homogeneous

mortality experience, i.e., their future survival probabilities are governed by the same

mortality law.6 Due to longevity risks prevailing in the annuities products, the hedger is

interested in purchasing longevity swaps to shift a part of the risk to the reinsurer. Let

us first introduce the notations used throughout this paper:

• lx: the initial number (in year 0) of policyholders in the hedger’s portfolio;

• lx+t: the random number of remaining policyholders in the hedger’s portfolio in year

t, t ∈ {1, ..., ωx}, where ωx is the maximal remaining life time for the policyholders

aged x;

• l̂x+t: the time-0 expected number of remaining policyholders in the hedger’s port-

folio in year t, t ∈ {1, ..., ωx};

• tpx = lx+t

lx
: the (random) t-year survival probability of the hedger’s portfolio;

• tp̂x = l̂x+t

lx
: the time-0 expected t-year survival probability of the hedger’s portfolio.

A more detailed table summarizing the notations used in this paper is provided in Ap-

pendix A. The time-0 random present value of the hedger’s annuity portfolio is then given

6We have chosen the simplest setting to keep the paper stay focused on the main topic. The annuity
business of a real life insurer could be more complex, for example, it may include multiple cohorts from
different risk classes. Such generalizations can be incorporated by our analysis in a straightforward
manner.
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by:

(
A−

ωx∑
t=1

e−rtlx+t

)
,

where A is the exogenous, initial premium collected from the policyholders. Further, we

assume for simplicity a constant annual interest rate r for all t. In real world applications,

A would be determined using the hedger’s pricing assumptions, which could be different

from the (reserving) mortality assumptions used in the hedging procedure discussed in

the sequel. Furthermore, because the numbers of future remaining policyholders, lx+t’s,

are uncertain, and it deals with annuity products, the hedgers are exposed to longevity

risk.

We assume there are two types of hedgers, a low (L)- and a high (H)-risk type. The

future mortality rates of the hedger’s portfolio depend on its risk type. Specifically, we

use tp
L
x and tp

H
x , t = 1, · · · , ωx to denote the conditional survival probability of the low-

and high-risk hedger, which are random variables underlying different probability dis-

tributions. The underlying mortality models will be discussed in Section 4.1. Further,

we assume that the reinsurer knows the probability distribution of both sets of survival

probabilities, but does not know which type the hedger is. More specifically, the reinsurer

knows that the hedger is a low-risk type with a probability of ε, which is strictly between

0 and 1, and a high-risk type with a probability 1 − ε. This assumption is equivalent to

the case where there are multiple hedgers with the same initial portfolio size, where ε is

the proportion of hedgers of the low-risk type.

We consider indemnity longevity swaps between the hedger and the reinsurer, with the

aim to mitigate the hedger’s longevity risk exposure. Specifically, the reinsurer, which

acts as the hedge provider, offers protection against the uncertainty of the portfolio of

the hedger over its lifespan. Formally, in each year t, the reinsurer provides two swaps,

one designed for the low-risk type and the other for the high-risk type. By acquiring the

swap, the hedger of risk type i pays a floating payment of M i · FLT it in exchange of a
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fixed payment of (1+πit) ·M i ·FIX i
t , with M i being the notional amount, and FIX i

t and

FLT it the fixed and the floating rate of the swap respectively for i = L,H. In general,

the risk premium loading at each time t can be negotiated separately between the two

counterparties. However, this will lead to substantial complexity to our economic model,

as well as computational burden to the numerical analysis. Therefore, in this paper we

follow Chen et al. (2021) and assume the following functional form for the risk loading:

πLt = αAL π̃
L
t ,

πHt = αAH π̃
H
t .

That is, the risk loading πit can be presented as the product of a constant and time-varying

component, where αAL ≥ 0 and αAH ≥ 0 are the constant components which will become

two choice variables in our optimal contracting, and π̃Lt and π̃Ht the time-varying parts

determined at time 0 for the low- and the high-risk type, respectively. In general, the

payments of the reinsurer, both the fixed and floating leg, could be any cash flows linked

to the mortality experience of the hedger’s portfolio. We follow a popular choice in the

existing literature and let FLT it be the t-year realized survival probability, tp
i
x, i = L,H,

and FIX i
t be the corresponding best estimate, i.e., tp̂

L
x for the low-risk type and tp̂

H
x for

the high-risk type (Dowd et al., 2006; Dawson et al., 2010).

In order to focus on the annuity portfolios considered in our model, we assume that

the reinsurer has no pre-existing liability, and its profit solely depends on the aggregate

net payments from trading the longevity swaps. Further, when both types of swaps are

available to the hedger, we consider for the moment that the hedger will purchase the

contract design for its risk type, i.e., it will not have the incentive to misrepresent and

take the contract designed for the other type.7 Formally, let M i = zAi lx, where zAi is the

7In principle, the hedger of risk type i can deviate to the contract designed for the other type. We
ignore this possible choice for now, and will later work out the conditions which justify the negligence.
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hedge rate for type i, the expected profit of the reinsurer is given by:

EP [PRA
R]

= EP
[
zAL 1{L} lx

ωx∑
t=1

e−rt
[
(1 + πLt )tp̂

L
x − tp

L
x

]
+ zAH 1{H}lx

ωx∑
t=1

e−rt
[
(1 + πHt )tp̂

H
x − tp

H
x

]]
= ε zAL α

A
L lx

ωx∑
t=1

e−rtπ̃Lt tp̂
L
x + (1− ε) zAH αAH lx

ωx∑
t=1

e−rtπ̃Ht tp̂
H
x (2.1)

= ε zAL α
A
L BL + (1− ε) zAH αAH BH ,

with Bi =
∑ωx

t=1 e
−rtπ̃it l̂

i
x+t for i = L,H, and 1{L} (resp. 1{H}) the indicator function

which equals to 1 if the hedger is the low- (resp. high-) risk type and 0 otherwise. This

assumption is to prevent the model from being degenerate. The reinsurer will maximize

the expected profit in (2.1) by choosing the optimal risk premiums (αAi ) and hedge rates

(zAi ), i = L,H. This optimization will be discussed in the next section, together with

a set of participation and incentive constraints which eliminate the hedger’s incentive to

misrepresent and find incentive-compatible contracts.

3 The Principal-Agent Problem

In this paper, we follow typical principal-agent optimization problems (see, for exam-

ple, Rothschild & Stiglitz, 1978; McAfee & McMillan, 1986), and assume that the swap

transactions will be executed in the following order.

1. The reinsurer announces the two types of swaps, with the specified risk premiums

and hedge rates (αAi , z
A
i ), i = L,H, and commits to them.

2. The hedger announces its type.

3. The hedger will enter the swap transaction if doing so could improve its utility level,

and it will buy the swap which gives it the higher utility level.

The optimal contract parameters will be determined by the reinsurer under a set of par-

ticipation and incentive constraints, which ensure that the hedger is willing to participate
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in the swap transaction and will not misrepresent its type. In order to come to these

constraints, let us first write down the random net profit function of both types as a

function of the hedge rate and the risk premium. Assuming that the hedger can only

purchase swaps of one type, the random profit function of the type-i hedger purchasing

the type-j swap with risk premium αAj and hedge rate zAj is given by:

PRi(αAj , z
A
j ) =

(
A−

ωx∑
t=1

e−rtlix+t

)
+ zAj lx

ωx∑
t=1

e−rt
[
tp
i
x − (1 + αAj π̃

j
t )tp̂

j
x

]
. (3.1)

The superscript i in PRi means the hedger is of type i, and (αAj , z
A
j ) means the hedger

purchases the type-j swap (j could be the same as i).

Furthermore, we assume that the hedger has the following mean-variance preference:

U
(
PRi(αAj , z

A
j )
)

= EP
[
PRi(αAj , z

A
j )
]
− 1

2
γV arP

[
PRi(αAj , z

A
j )
]
, i, j = L,H,

where γ describes the degree of risk aversion. In this section, we assume identical risk

aversion for both types. Mean-variance preference is a widely used preference in decision

theory and portfolio choice literature (see e.g. Ormiston & Schlee, 2001). In particular, it

is shown to be fully compatible with the expected utility theory under certain conditions

(Sinn, 1990). Further, it can approximate decisions of a wide variety of (concave) utility

functions (Kroll et al., 1984; Markowitz, 2014).

Next, we will introduce the constraints for the reinsurer’s optimization problem. First,

given a risk type (high/low), the hedger owns different investment possibilities. Hence,

in general, it is not necessarily the case that a hedger will honestly announce its type,

and purchase the “right” swap. Instead, the hedger will not misrepresent its type only if

the following incentive constraints are satisfied:

U
(
PRi(αAi , z

A
i )
)
≥ U

(
PRi(αAj , z

A
j )
)
, with i, j = L,H and i 6= j,

that is, the hedger could receive a higher utility by choosing the swap designed for its
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type. Second, both risk types have a reservation utility level, denoted by ŪL and ŪH ,

respectively, representing the corresponding type’s utility level without trading any swap.

The hedger will participate in the swap transaction only if doing so leads to a utility

improvement, namely, if the following participation constraints are satisfied:

U
(
PRi(αAi , z

A
i )
)
≥ Ū i, with i, j = L,H.

Under these constraints, the optimization problem of the reinsurer is given by:

max
αA
L ,z

A
L ,α

A
H ,z

A
H

EP [PRA
R] subject to (3.2)

U
(
PRL(αAL , z

A
L )
)
≥ ŪL, (PC1)

U
(
PRH(αAH , z

A
H)
)
≥ ŪH , (PC2)

U
(
PRL(αAL , z

A
L )
)
≥ U

(
PRL(αAH , z

A
H)
)
, (IC1)

U
(
PRH(αAH , z

A
H)
)
≥ U

(
PRH(αAL , z

A
L )
)
. (IC2)

Typically, (PC1) and (IC2) will be binding at the optimal solution, if it exists. This means

that the low-risk type will be indifferent between participating or not, and the high-risk

type will have no incentive to deviate to the contract offered to the low-risk type at the

optimal solution. Classic literature on adverse selection (Rothschild & Stiglitz, 1978)

shows that, if the above conditions are not satisfied, the hedge provider could always

increase its expected profit by changing the prices of the two products. As for the condi-

tions (PC2) and (IC1), they are satisfied with inequality and do not need to be taken into

consideration. After the optimal contracts are derived, we show that these two conditions

are indeed satisfied as well.

We proceed with the optimal contracting problem as follows: we first assume that the

two conditions (PC1) and (IC2) are binding, based on which the first order and com-

plementary slackness conditions are derived. In other words, we assume the existence of

the separating equilibrium, where the hedgers will choose the swaps tailor-made to their
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type. We then examine the existence of the solution which satisfies conditions (PC2) and

(IC1). With the two aforementioned constraints binding, we get the following Lagrangian

function:

L = ε zAL α
A
L BL + (1− ε) zAH αAH BH + λA1

(
U
(
PRL(αAL , z

A
L )
)
− ŪL

)
+ λA2

(
U
(
PRH(αAH , z

A
H)
)
− U

(
PRH(αAL , z

A
L )
))

(3.3)

with both λAk ’s, k = 1, 2 larger than or equal to 0. Then, based on the Lagrangian func-

tion, the solution to the optimization problem (3.2) is stated in the following Proposition.

Proposition 1 (Optimal contracting with adverse selection). The solution to the opti-

mization problem (3.2) is given by:

• z
(A,∗)
L = 1 + (1−ε)(D̂H−D̂L)

γ
(
(1−ε)VH−VL

) , α
(A,∗)
L = γVL

2BL

(
1− (1−ε)(D̂H−D̂L)

γ
(
(1−ε)VH−VL

)),

• z
(A,∗)
H = 1, α

(A,∗)
H = γVH

2BH +
z
(A,∗)
L

BH (D̂L − D̂H) + γ
2BH
(
(z

(A,∗)
L )2 − 2z

(A,∗)
L

)
(VH − VL),

• λ
(A,∗)
1 = 1 and λ

(A,∗)
2 = 1− ε,

with D̂i =
∑ωx

t=1 e
−rtl̂ix+t , Bi =

∑ωx

t=1 e
−rtπ̃it l̂

i
x+t, and V i = l2x Var(

∑ωx

t=1 e
−rt

tp
i
x) for i =

L,H.

Proof. The proof can be found in Appendix C.1.

Due to the complexity of the longevity swap contracts in which many parameters are

involved, no simple interpretations can be provided to the optimal solution in Proposition

1. The optimal solution depends on how specifically the low- and high-risk type are

defined. Per se, there are multiple ways to define the low- and high-risk type of the

hedger. In the next subsection, we will consider two representative definitions of the risk

types, and discuss the optimal contracts in each scenario.

3.1 Scenario Analysis

In this paper, we consider the following two scenarios of the hedger’s portfolio:
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a) the high-risk type hedger has a higher expectation of its outstanding liability than

the low-risk type, and the variances of both risk types’ liability are identical, i.e.,

D̂H > D̂L and VH = VL = V .

b) the high-risk type hedger’s outstanding liability is higher in both the expectation

and variance, i.e., D̂H > D̂L and VH > VL.

In the following analysis, we only consider optimal hedge rates that are between 0 and 1,

i.e., z
(A,∗)
L ∈ [0, 1] and z

(A,∗)
H ∈ [0, 1]. This assumption resembles the real-world situations

in which the reinsurer offers partial or full longevity hedge to the life insurers or pension

plans, and does not offer short-sell or over-hedge opportunities of the indemnity swap (or

other reinsurance products). This assumption is also typical in the reinsurance literature,

such as Højgaard & Taksar (1998), Schmidli (2001), and Gu et al. (2010). We then derive

conditions of the parameter values (e.g., B(i), D(i), and V(i)) such that the optimal hedge

rates fall within the desired range.

Before proceeding to the scenario analysis of the optimal contracting, the optimal solution

in the absence of information asymmetry, i.e., when the reinsurer knows exactly the risk

type of the hedger, is presented. With perfect information, Chen et al. (2021) show that

it is optimal for the reinsurer to negotiate with each type of hedger separately, and sell

them the swap designed for their own type. The resulting optimal hedge rates and the risk

premiums, which we refer to as the first-best solution, are summarized in the following

Proposition.

Proposition 2 (Optimal contracting with perfect information). The optimization prob-

lem under perfect information (P ) for each hedger i ∈ {L,H} is given by:

max
αP
i ,z

P
i

EP [PRP
R] subject to

U
(
PRP

i (αPi , z
P
i )
)
≥ Ū i,
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where

PRP
R = zPi l

i
x

ωx∑
t=1

e−rt
[(

1 + αPi π̃
i
t

)
tp̂
i
x − tp

i
x

]
,

PRP
i (αPi , z

P
i ) =

(
A−

ωx∑
t=1

e−rtlix+t

)
+ zPi l

i
x

ωx∑
t=1

e−rt
[
tp
i
x −

(
1 + αPi π̃

i
t

)
tp̂
i
x

]
, and

π̃it is the hedger specific risk loading. The optimal solution is given by

z
(P,∗)
i = 1, α

(P,∗)
i =

γV i

2Bi
,

where γ is the risk aversion parameter of the hedger, and Bi =
∑ωx

t=1 e
−rtπ̃it l̂

i
x+t.

Proof. The proof can be found in Proposition 2 in Chen et al. (2021).

The subscript P in the proposition above refers to perfection information. With perfect

information, we see that both risk types opt for a full indemnity hedge (z
(P,∗)
i = 1,

i = L,H). Moreover, the risk premiums depend only on the hedger’s own portfolio, since

each contract is negotiated individually. Next, we proceed to the scenario analysis under

asymmetric information. First, the optimal solution under Scenario a) is summarized in

Lemma 1.

Lemma 1 (Optimal contracting under Scenario a): D̂H > D̂L and VH = VL = V). The

optimal solution is given by:

z
(A,∗)
L = 1− (1− ε)(D̂H − D̂L)

γεV
,

z
(A,∗)
H = 1,

α
(A,∗)
L =

γV
2BL

(
1 +

(1− ε)(D̂H − D̂L)

γεV

)
,

α
(A,∗)
H =

1

2
γ
V
BH

+
z
(A,∗)
L

BH
(D̂L − D̂H). (3.4)

We see that the optimal risk premium α
(A,∗)
H of the high-risk type is lower than the

first-best case, which means the high-risk type hedger enjoys a cheaper swap due to in-

formation asymmetry. Consequently, the high-risk type hedger will opt for a full hedge,
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as in the first-best case. On the other hand, the optimal hedge rate (resp. risk premium)

of the low-risk type hedger is reduced (resp. increased) by the same percentage adjust-

ment factor (1−ε)(D̂H−D̂L)
γεV . With the assumption of D̂H > D̂L, the adjustment factor is

positive, making the premium rate higher than the first-best level, which consequently

makes a partial hedge optimal for the low-risk type. In other words, in order to prevent

the high-risk type from deviating, the reinsurer needs to charge a higher risk premium

for the low-risk type swap, which causes the low-risk type hedger to choose a lower hedge

rate. Further, the adjustment factor increases when the difference between the expected

liability of the two types, D̂H − D̂L, is larger, making α
(A,∗)
L and z

(A,∗)
L deviate further

from the first-best level. Finally, α
(A,∗)
L is a decreasing function of ε. That is, when the

probability of the hedger being the high-risk type is larger, the separating equilibrium

requires a higher α
(A,∗)
L for the incentive constraints to hold.

From Solution (3.4), we see that the adjustment factor (1−ε)(D̂H−D̂L)
γεV needs to be bounded

above by 1 in order to ensure z
(A,∗)
L > 0. This condition translates to:

D̂H − D̂L < γεV
1− ε

. (3.5)

In other words, the difference between the expected liability of the two risk types cannot

exceed a threshold dependent on V , ε, and γ. If the expected liabilities are too different,

then α
(A,∗)
L needs to be so high that the low-risk type hedger finds the longevity swap

not attractive as a hedging instrument. Moreover, the threshold is increasing in all the

three parameters, which means that (combinations of) a more volatile liability, a higher

probability of the hedger being the low-risk type, and a higher risk aversion parameter

would lead to a greater tolerance of the difference between the two expected liabilities.

Next, the optimal solution under Scenario b) is shown in Lemma 2.

Lemma 2 (Optimal contracting in Scenario b): D̂H > D̂L and VH > VL). The optimal



3 THE PRINCIPAL-AGENT PROBLEM 16

solution has the general form of:

z
(A,∗)
L = 1− (1− ε)(D̂H − D̂L)

γ
(
VL − (1− ε)VH

) ,
z
(A,∗)
H = 1,

α
(A,∗)
L =

γVL

2BL

(
1− (1− ε)(D̂H − D̂L)

γ
(
VL − (1− ε)VH

)),
α
(A,∗)
H =

γVH

2BH
+
z
(A,∗)
L

BH
(D̂L − D̂H) +

γ

2BH
(
(z

(A,∗)
L )2 − 2z

(A,∗)
L

)
(VH − VL). (3.6)

Similar to Scenario a), we see that the high-risk type hedger still opts for a full hedge.

Also, α
(A,∗)
L and z

(A,∗)
L are increased and reduced by a percentage adjustment factor,

(1−ε)(D̂H−D̂L)

γ
(
VL−(1−ε)VH

) , respectively. When this adjustment factor is bounded by 0 and 1, it holds

that z
(A,∗)
L ∈ [0, 1] and α

(A,∗)
H lower than the first-best value. To keep the adjustment

factor within the desired range, the following conditions need to hold:

VH <
VL

(1− ε)
, and (3.7)

D̂H − D̂L ≤
γ
(
VL − (1− ε)VH

)
1− ε

. (3.8)

Several observations can be made. First, from Constraint (3.7), we see that VH cannot

be substantially larger than VL for a fixed ε. Second, the difference in VH and VL can

be larger if ε is large, i.e., the probability of the hedger being the high-risk type is small.

Third, Constraint (3.8) indicates that, similar to Scenario a), the difference between D̂H

and D̂L cannot exceed a threshold dependent on VH , VL, ε, and γ. That is, when the

expected liability of the two risk types are too different, α
(A,∗)
L has to be so high that the

low-risk type finds the longevity swap not as attractive as a hedging instrument. In fact,

when Constraint (3.8) is violated, α
(A,∗)
H would be larger than its first-best value, and the

participation constraint of the high-risk type hedger would be violated:

U(PRH(α
(A,∗)
H , z

(A,∗)
H ))− ŪH = −α(A,∗)

H z
(A,∗)
H BH − 1

2
γ((z

(A,∗)
H )2 − 2z

(A,∗)
H )VH

= −α(A,∗)
H BH +

γVH

2
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= −
(
zL

BH
(D̂L − D̂H) +

γ

2BH
(
(z

(A,∗)
L )2 − 2z

(A,∗)
L

)
(VH − VL)

)
< 0

and thus no solution exists to the principal-agent problem. In other words, when the

expected liability of the high-risk type hedger is too large, the reinsurer would have to

charge higher risk premiums for both types to ensure that they do not deviate. However,

due to the overly high risk premium, even the high-risk type hedger would not be willing

to purchase any swap at all, and thus the market collapses.

All in all, the optimal hedge rate of the low-risk type will fall outside the [0, 1] interval

when the two risk types are “too” different, i.e., when DH and/or VH are substantially

larger than DL and/or VL. Since the two risk types are determined only by information

not observed by the reinsurer, they are not likely to be substantially different from each

other after all observable information is taken into account. Indeed, in the subsequent

numerical analyses, we will see that moderate differences of the mortality law between

the two risk types will lead to reasonable values of z
(A,∗)
L .

4 Numerical Analysis

In this section, illustrative numerical analyses are performed to evaluate the optimal

longevity swap contracts, as well as their impact on the reinsurer and the hedger under

information asymmetry. Section 4.1 introduces the mortality model used in this paper

to simulate the outstanding liabilities of the hedger, Section 4.2 discusses the bench-

mark numerical analysis. Finally, Section 4.3 compares the optimal contracts under the

benchmark analysis with two extreme cases: the first-best case in which the reinsurer

has perfect information, and the Stackelberg game case in which the reinsurer does not

address adverse selection in the presence of asymmetric information.
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4.1 The mortality model

In this paper, we use the Age-Period-Cohort-Improvement (APCI) model to simulate

future survival probabilities. The APCI model is used by the CMI Mortality Projections

Committee8 to generate life tables for UK life insurers and pension funds. Specifically,

denote by mx,t the annual death rates at age x and in year t, the APCI model describes

the logarithm of the death rate as:

ln(mx,t) = β(1)
x + β(2)

x (t− t̄) + κt + γc, (4.1)

where β
(1)
x is the age effect representing the average mortality level at age x, β

(2)
x is the

period effect representing the age-specific exposure to the linear time trend, t̄ is a normal-

ization parameter set to the average year in the sample, κt is a time-varying parameter

representing the residual mortality improvements not captured by the linear trend, and

finally, γc is the cohort-effect, i.e., the unique mortality pattern shared by the group of

people born in the same year.

The parameters of Model (4.1) are estimated by the least squares approach. Specifically,

let X be the number of ages and T the number of years in the data, there are 3X+2T −1

parameters to be fitted. The parameters are estimated using the unisex mortality data of

England from 1956 to 2016 and ages from 20 to 100. We do not consider ages above 100

in the estimation, as the number of death is scarce and volatile for these ages, and thus

the mortality rates could introduce large estimation errors when included. In the numer-

ical analysis, we assume that the maximally attainable age is 120, which is typically the

maximum age of life tables used by insurance companies in practice. In order to generate

the mortality rates from 101 to 120, we need to extrapolate the age and the period effects.

Specifically, we follow Dowd & Blake (2019) and Dowd et al. (2019), and extrapolate β
(1)
x

using a linear regression fitted to the estimated parameters for ages x ≥ 70, and β
(2)
x

using the estimated parameters for age 100, i.e. β
(2)
x = β

(2)
100 for x > 100. In other words,

8Source: CMI Mortality Projections Committee et al. (2016).
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we assume that the log-mortality level increases linearly for ages above 100, while their

period effects are identical to that of age 100. We refer to Dowd & Blake (2019) and Dowd

et al. (2019) for more detailed discussions on old age mortality extrapolation. The es-

timated parameters and the extrapolated age and period effects are shown in Appendix B.

In order to forecast future survival probabilities, the mortality improvement factor κt

needs to be projected. To this end, we fit a set of candidate time-series models, ARIMA(p, d, q)

with p, q = 1, 2, 3, and d = 1, 2 to the estimated κt process. Based on the Bayesian In-

formation Criterion (BIC), ARIMA(0,1,1) is selected as the optimal model specification:

κt = κt−1 + θσκεt−1 + σκεt,

where θ is the moving-average parameter, σκ is the standard deviation of the error terms,

and εt are i.i.d. standard normal distributed error-terms. We obtain the estimation

result: θ̂ = −0.3008 and σ̂κ = 0.0194. Finally, if only the existing cohorts are considered,

as is the case in our analysis, the cohort effect γc does not need to be projected.

4.2 Benchmark Analysis

In this subsection, we evaluate the reinsurer’s expected profit and the hedger’s utility

improvement under the two scenarios described in Section 3. First, the future survival

probabilities of the two risk types are simulated. To this end, we assume that the survival

probabilities of the low-risk type follow the same mortality law under both scenarios,

and are generated by the estimated APCI model discussed above, whereas the survival

probabilities of the high-risk type are simulated by the estimated APCI model with the

following two modifications:

β̂(2,H)
x = Bβ̂(2)

x ,

σ̂Hκ = Kσ̂κ,
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i.e., the period effects and the standard deviation of the mortality improvement effect of

the high-risk type hedger are adjusted by the factor B and K, respectively. By selecting

appropriate values of B and K, the two scenarios can be constructed.

The parameter setup of the benchmark numerical analysis is summarized in Table 1. In

particular, we consider a single cohort with age 65 at time 0, and the hedger’s initial

portfolio size is 1,000. The probability of the hedger being the low-risk type is set to be

ε = 0.5, that is, both risk types are equally probable given the observable information of

the hedger. The value of γ is in line with the values used in the existing literature (see,

for example, Zhang et al., 2009; Li et al., 2017). For each Scenario, S = 1, 000 future

paths of survival probabilities are simulated for both risk types. Based on this setup, the

simulated life expectancy is 21.68 years for the low-risk type hedger, and 22.75 for the

high-risk type hedger under both scenarios.

Risk-free rate Initial age Pool size Risk aversion

r = 2% x0 = 65 lx0 = 1, 000 γ = 0.05

Scenario K B Prob. of low-risk type

a) 1.01 1.2
ε = 0.5

b) 1.3 1.2

Table 1: Base case parameter setup.

When calculating the payoff of the swaps, the time-varying risk loading π̃it is set as the

standard-deviation premium principle, π̃it = σ

(
lix+t

l̂ix+t

)
, i = L,H. The resulting key quan-

tities of the outstanding liabilities for both scenarios are summarized in Table 2. We

see that the factors B = 1.2 and K = 1.3 lead to a 4% increase in the high-risk type’s

expected liability D̂H under both scenarios, and a 37% increase in the variance of the

liability’s present value VH under Scenario b). Further, BH =
∑ωx

t=1 e
−rtπ̃Ht l̂

H
x+t is higher

under Scenario b) because of higher time-varying risk loadings π̃Ht = σ

(
lHx+t

l̂Hx+t

)
.
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Scenario Risk type Bi D̂i V i

a)
L 396 16,820 93,091

H 397 17,493 93,091

b)
L 396 16,820 93,091

H 430 17,497 127,808

Table 2: Key quantities of the outstanding liabilities under both scenarios.

The optimal solution under both scenarios is shown in Table 3. For the sake of compar-

ison, we also include the optimal contracts in the case of perfect information. First, we

see α
(A,∗)
L > α

(P,∗)
L and α

(A,∗)
H < α

(P,∗)
H under both scenarios. This is consistent with the

theoretical results derived in Section 3, i.e., the reinsurer has to increase α
(A,∗)
L and reduce

α
(A,∗)
H in order to prevent the high-risk type from deviating in the presence of asymmetric

information. As a result, the high-risk type hedger benefits from the cheaper swap and

enjoys an improvement in expected utility, whereas the low-risk type hedger would opt

for a lower hedge rate due to the higher price. Second, α
(A,∗)
H is lower under Scenario b),

where the liability of the high-risk type hedger is more volatile. This is at odd with the

optimal contracts under perfect information, where the optimal risk premium increases

with the liability’s volatility. In fact, although the survival probabilities of the low-risk

type hedger are unchanged, α
(A,∗)
L has increased when the high-risk type hedger becomes

riskier. This observation implies that, due to the incentive constraints, the low-risk type

hedger will subsidize the high-risk type hedger more when the two risk types are more

different. Finally, the optimal hedge rate of the low-risk type hedger is between 0 and 1

under both scenarios, meaning that both conditions (3.7) and (3.8) are satisfied with the

chosen parameter values.

The effect of the probability ε

In the benchmark analysis, we assumed ε = 0.5, i.e., the probability of the hedger being

the low-risk type is 50% given the observable information. In this subsection, we analyse

the effect of this probability on the optimal solution. An ε larger (smaller) than 0.5 rep-
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Asymmetric Information

Scenario z
(A,∗)
L α

(A,∗)
L z

(A,∗)
H α

(A,∗)
H

a) 0.856 6.711 1 4.414

b) 0.769 7.218 1 4.132

Perfect Information

Scenario z
(P,∗)
L α

(P,∗)
L z

(P,∗)
H α

(P,∗)
H

a) 1 5.86 1 5.84

b) 1 5.86 1 7.11

Table 3: The optimal results for both scenarios and ε = 0.5 and γ = 0.05.

resents an optimistic (pessimistic) scenario regarding the hedger’s type.

First, we compute the minimally acceptable probability of the low-risk type, i.e. ε, such

that the low-risk type hedger will not prefer short-selling the swap. This number is 12.6%

under Scenario a) and 34.1% under Scenario b). That is, when the difference between

the two risk types is larger (under Scenario b), in which the high-risk type hedger is also

riskier), the reinsurer needs to set a higher α
(A,∗)
L to prevent the high-risk type hedger

from deviating. Consequently, the set of ε for the longevity swap transaction to happen

is narrower (c.f. Lemma 2). Furthermore, Table 4 reports the optimal contracts with

different values of ε. We see that the risk premium of the high-risk type swap, α
(A,∗)
H ,

decreases with ε under both scenarios. Consequently, the minimal value of α
(A,∗)
L required

to prevent the high-risk type hedger from deviating is also decreasing in ε, and thus the

optimal hedge rate of the low-risk type hedger, z
(A,∗)
L , is increasing in ε. Finally, when

ε approaches 1, both α
(A,∗)
L and z

(A,∗)
L converge to the first-best solution (c.f. Lemmas 1

and 2), as the impact of the high-risk type hedger on the expected profit of the reinsurer

diminishes.
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Scenario a) Scenario b)

ε 0.13 0.30 0.50 0.75 0.95 0.35 0.45 0.6 0.75 0.95

z
(A,∗)
L 0.03 0.66 0.86 0.95 0.99 0.13 0.66 0.87 0.94 0.99

z
(A,∗)
H 1 1 1 1 1 1 1 1 1 1

α
(A,∗)
L 11.53 7.84 6.71 6.15 5.91 10.99 7.77 6.61 6.19 5.91

α
(A,∗)
H 5.80 4.74 4.41 4.25 4.18 6.47 4.37 3.91 3.77 3.69

Table 4: The optimal contract parameters with different values of ε (probability of the low-risk type)
under Scenario a) (left panel) and b) (right panel).

4.3 Further analysis of the adverse selection effect

In this subsection, we further evaluate the impact of the information asymmetry on the

reinsurer’s profit. To this end, we compare the benchmark analysis discussed in Section

4.2 with the following two cases:

1. The perfect information case, in which the reinsurer knows the type of the hedger

and offers the corresponding indemnity longevity swap. The optimal contracts in

this case are given in Proposition 2.

2. An imperfect information case, in which the reinsurer does not know the type of

the hedger, neither does it wish to address the adverse selection issue. Instead, it

only offers a single longevity swap based on a Stackelberg game (S) and with risk

loading αS.

In the second case, we assume that the reinsurer and hedger will play a Stackelberg game,

a strategic game widely applied in economics (see, among many others, Maharjan et al.,

2013; Sinha et al., 2013; Li & Sethi, 2017), where the reinsurer is the Stackelberg leader,

and the hedger is the Stackelberg follower. The resulting reinsurance contract will be a

subgame perfect Nash equilibrium, which serves both the reinsurer and hedger best. The

Stackelberg game proceeds as follows.

1. The reinsurer stipulates the premium for the longevity swap, αS.
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2. Based on the given αS, the hedger chooses the hedge rate zSi based on its type. The

chosen zSi will maximize its utility U
(
PRi(zSi , α

S)
)
.

3. The reinsurer maximizes its expected profit by choosing the optimal risk premium,

taking into account the optimal responses of the hedger, i.e. the hedge rate as a

function of αS.

4.3.1 The Stackelberg game

We now derive the optimal contracts with the Stackelberg game. In this case, since the

reinsurer only offers a common longevity swap, we assume that this common swap is

written on a synthetic portfolio, lx+t = ε lLx+t+ (1− ε)lHx+t, t = 1, 2, ..., ωx. In other words,

at each time t, the number of policyholders alive in the synthetic portfolio is the average

of the low-risk and the high-risk type portfolio, weighted by their respective probabilities.

The time-0 best estimated survival probabilities of this synthetic portfolio is defined as

tp̂x = l̂x+t

lx
, t = 1, 2, ..., ωx.

In the first step of the Stackelberg game, the hedger chooses a hedge rate zSi based on its

type to maximize its expected utility given an exogenous αS. The optimization problem

has the following form:

max
zSi

U
(
PRS

i (zSi , α
S)
)
, where (4.2)

PRS
i =

(
A−

ωx∑
t=1

e−rtlix+t

)
+ zSi lx

ωx∑
t=1

e−rt
[
tp
i
x −

(
1 + αSπ̃St

)
tp̂x

]
.

Based on the optimal hedge rate of the hedger, the reinsurer then maximizes its expected

profit by choosing the optimal αS.

At this stage, the reinsurer has two options: it could offer a lower risk premium so that

the hedger would purchase the swap regardless of its risk type, or it could set a higher

risk premium at which only the high-risk type hedger will be interested in buying the

swap. With the former option, the reinsurer enjoys a larger expected transaction volume
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in exchange of a lower price, whereas the opposite holds for the latter option. A priori, it

is unclear which option is better. Hence, we will discuss both of them. The optimization

problem of the first option is given by:

max
αS

EP [PRS
R], where (4.3)

PRS
R = zSL1{L}lx

ωx∑
t=1

e−rt
[(

1 + αSπ̃St
)
tp̂x − tp

L
x

]
+ zSH1{H}lx

ωx∑
t=1

e−rt
[(

1 + αSπ̃St
)
tp̂x − tp

H
x

]
.

With the second option, the reinsurer sets an αS so high that the low-risk type hedger will

find it too expensive to participate. Formally, denote by α̃ the threshold risk premium that

makes the low-risk type hedger indifferent between participating or not (i.e., z
(S,∗)
L = 0). If

α(S,∗) > α̃, the low-risk type hedger will not enter the market. The optimization problem

of the reinsurer in this case is given by:

max
αS

EP [PRS
R], subject to (4.4)

αS ≥ α̃,where

PRS
R = zSH1{H}lx

ωx∑
t=1

e−rt
[(

1 + αSπ̃St
)
tp̂x − tp

H
x

]
.

After solving the two optimization problems above, the reinsurer will then compare the

resultant expected profits, and track down the final optimal risk loading αS. The optimal

solution of the optimization problems above is summarized in the following proposition.

Proposition 3 (Optimal contracting of the Stackelberg game). The optimal solution of

the maximization problem (4.2)-(4.3) is given by:

α(S,∗) =
1
2
γVHVL + ε(D̂L − D̂)VH + (1− ε)(D̂H − D̂)VL

BS
(
εVH + (1− ε)VL

) and (4.5)

z
(S,∗)
i = 1 +

D̂i − D̂ − α(S,∗)BS

γV i
, for i = L,H, (4.6)

where D̂ =
∑ωx

t=1 e
−rtl̂x+t, and BS = lx

∑ωx

t=1 e
−rtπ̃St tp̂x. The threshold risk premium is
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α̃ = D̂L−D̂+γVL

BS .

The optimal solution of the maximization problem (4.2) and (4.4) exists only if D̂H−D̂L ≥

γVL − 1
2
γVH , in which case is given by:

α(S,∗) =
1
2
γVH + (D̂H − D̂)

BS

z
(S,∗)
L = 0 and z

(S,∗)
H = 1 +

D̂H − D̂ − αSBS

γVH
=

1

2
.

Proof. The derivations are collected in Appendix C.2.

Hence, when D̂H−D̂L < γVL− 1
2
γVH , i.e., the difference between the expected liability of

the two risk types is not too large compared to the difference in the volatility, it is optimal

for the reinsurer to set a lower premium and attract both risk types. In fact, the constraint

αS ≥ α̃ will be violated when D̂H−D̂L < γVL− 1
2
γVH and hence the optimization problem

(4.4) has no solution. On the other hand, when D̂H − D̂L ≥ γVL − 1
2
γVH , the reinsurer

will compare the two options and select the α(S,∗) that leads to the higher expected profit.

4.3.2 The numerical comparison

In this subsection, we numerically compare the expected profit of the reinsurer resulting

from the three cases discussed above. In the latter two cases, the similar standard devia-

tion premium principle is used for the time-varying loadings: π̃
(P,i)
t = σ

(
lix+t

l̂ix+t

)
, i = L,H

and π̃St = σ

(
lx+t

l̂x+t

)
, t = 1, 2, ..., ωx. Similar to the benchmark analysis, the comparison

is done under the two scenarios described in Section 4.2. Under both scenarios, it holds

that D̂H − D̂L < γVL − 1
2
γVH and thus the solution of the Stackelberg game is given by

(4.5) and (4.6), i.e. both risk types will purchase the longevity swap.

Let us define the utility improvement of the hedger by

Û♦
i = Ui(PR♦

i (α
(♦,∗)
i , z

(♦,∗)
i ))− Ūi
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for i = L,H and ♦ ∈ {A,P, S}, i.e. the utility gain achieved from trading the swap. For

the three cases, they are given by:

• Benchmark analysis: ÛA
i = −α(A,∗)

i z
(A,∗)
i Bi − 1

2
γ
(
(z

(A,∗)
i )2 − 2z

(A,∗)
i

)
V i.

• Perfect information: ÛP
i = −α(P,∗)

i z
(P,∗)
i Bi − 1

2
γ
(
(z

(P,∗)
i )2 − 2z

(P,∗)
i

)
V i.

• Stakelberg game: ÛF
i = z

(S,∗)
i D̂i − z(S,∗)i (D̂ + α(S,∗)BS)− 1

2
γ
(
(z

(S,∗)
i )2 − 2z

(S,∗)
i

)
V i.

Finally, we remark that in the case of perfect information, ε would be either 0 or 1

because the reinsurer knows exactly the hedger’s type. However, in order to facilitate

the comparison with the other two cases, we still consider the following expected profit

formula in the perfect information case:

EP [PRP
R] = EP

[
zPL 1{L} lx

ωx∑
t=1

e−rt
[
(1 + αPL π̃

L
t )tp̂

L
x − tp

L
x

]
+ zPH 1{H}lx

ωx∑
t=1

e−rt
[
(1 + αPH π̃

H
t )tp̂

H
x − tp

H
x

]]
,

with EP [1{L}] = ε and EP [1{H}] = 1− ε.

The optimal contracts, the expected profit of the reinsurer, as well as the utility improve-

ment of both risk types under Scenario a) are shown in Table 5. The total present value

of the fixed leg, Π
(♦)
i = α

(♦,∗)
i

∑ωx

t=1 e
−rtπ̃

(♦)
t l̂

(♦)
x+t, is also shown for each risk type for each

case. First, we see that the reinsurer obtains the highest expected profit in the case of

perfect information. This is not surprising, as the reinsurer can design contracts that

exploit all utility improvement from both risk types. Second, and more importantly, tak-

ing the adverse selection into account and offering type-dependent swaps leads to much

higher expected profit of the reinsurer under information asymmetry. This is because the

benchmark principal-agent problem utilizes type-dependent swaps, and can thus extract

more profit from both risk types. This is not possible in the Stackelberg game, where

only one swap is offered. In particular, we see that ΠA
L is much higher than ΠA

H in the

benchmark case, which indicates the value of type-dependent pricing. Another reason

that the reinsurer’s expected profit is lower in the Stackelberg game is that the hedger is
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able to select a hedge rate that maximizes its utility level, which is not the case in both

the benchmark analysis and the perfect information case. Hence, both risk types end up

with larger utility improvement in the Stackelberg game.

Optimal Contracts

Benchmark Analysis Perfect Information Stackelberg Game

z
(A,∗)
L = 0.86 α

(A,∗)
L = 6.71 z

(P,∗)
L = 1 α

(P,∗)
L = 5.86 z

(S,∗)
L = 0.43

α(S,∗) = 5.85
z
(A,∗)
H = 1 α

(A,∗)
H = 4.41 z

(P,∗)
H = 1 α

(P,∗)
H = 5.86 z

(S,∗)
H = 0.57

Present Value of the Fixed Leg

ΠA
L = 2663.2 ΠA

H = 1752.3 ΠP
L = 2327.3 ΠP

H = 2327.2 ΠS
L = ΠS

H = 2327.2

Expected Profit

E[PRA
R] = 2015.6 E[PRP

R] = 2327.1 E[PRS
R] = 1139.3

Utility improvement of the hedger

ÛA
L = 0 ÛA

H = 575 ÛP
L = 0 ÛP

H = 0 ÛS
L = 426 ÛS

H = 762

Table 5: Optimal contract parameters of the three swaps (top panel), the expected profits of the reinsurer
(mid panel) and the utility improvement of the hedger (bottom panel) under Scenario a).

The distribution of the reinsurer’s profit in each case under Scenario a) are displayed in

Figure 1 and the 0.5%, 5%, 95%, and 99.5% quantiles are shown in Table 6. First, we see

that the distribution is most concentrated in the Stackelberg game. This is because the

fixed payments of the swap in this case are the same regardless of the hedger’s type. Fur-

ther, the profit distribution is wider in the benchmark case than the perfect information

case. The reason is that the optimal hedge rate of the low-risk type hedger is lower in the

benchmark case (0.86 vs. 1). Therefore, the profit of the reinsurer resulting from the two

risk types are more different than in the benchmark case. We can also see from Table 6

that the benchmark analysis leads to substantially higher quantiles than the Stackelberg

game.

The results under Scenario b) can be found in Table 7, from which we observe similar
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Figure 1: The histogram of the distribution of the profit of the reinsurer for Scenario a) and for each case,
where A denotes the benchmark case, P the perfect information case and S the Stackelberg
game.

Quantile 0.5% 5% 95% 99.5%

A 1024.8 1360.3 2614.1 2879.2

P 1520.9 1819.4 2824.6 3102.4

S 717.1 883.7 1390.2 1546.8

Table 6: Selected quantiles of the profit distributions of the reinsurer resulting from the benchmark
analysis (A), the perfect information case (P ), and the Stackelberg game (S) under Scenario
a).

patterns as Scenario a). Specifically, offering type-dependent swaps in the case of adverse

selection significantly increases the expected profit of the reinsurer. However, compared

to Scenario a), the lack of information leads to a greater decrease in the expected profit

of the reinsurer (compared to the profit in the perfect information case). This is because

the reinsurer needs to set a higher Π
(A,∗)
L and lower Π

(A,∗)
H (compared to Π

(P,∗)
L and Π

(P,∗)
H

in the perfect information case) to prevent the now riskier high-risk type hedger from

deviating. These risk premiums lead to a lower z
(A,∗)
L and a higher utility improvement

of the high-risk type hedger. The high-risk type hedger enjoys a higher utility improve-

ment in the Stackelberg game. Hence, under information asymmetry, the more the two

risk types differ, the more the high-risk type hedger benefits. Finally, in the Stackelberg

game, the optimal hedge rate of the two risk types differ more than under Scenario a).

Also, the utility improvement has reduced for the low-risk type while increased for the
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high-risk type, which indicates that the low-risk type subsidizes the high-risk type more

when the two risk types are more different.

Optimal Contracts

Benchmark Analysis Perfect Information Stackelberg Game

z
(A,∗)
L = 0.77 α

(A,∗)
L = 7.22 z

(P,∗)
L = 1 α

(P,∗)
L = 5.86 z

(S,∗)
L = 0.36

α(S,∗) = 6.25
z
(A,∗)
H = 1 α

(A,∗)
H = 4.13 z

(P,∗)
H = 1 α

(P,∗)
H = 7.11 z

(S,∗)
H = 0.64

Present Value of the Fixed Leg

ΠA
L = 2864.0 ΠA

H = 1855.5 ΠP
L = 2327.3 ΠP

H = 3195.2 ΠS
L = ΠS

H = 2640.1

Expected Profit

E[PRA
R] = 2029.5 E[PRP

R] = 2761.2 E[PRS
R] = 1273.1

Utility improvement of the hedger

ÛA
L = 0 ÛA

H = 1340 ÛP
L = 0 ÛP

H = 0 ÛS
L = 302 ÛS

H = 1307

Table 7: Optimal contract parameters of the three swaps (top panel), the expected profits of the reinsurer
(mid panel) and the utility improvement of the hedger (bottom panel) under Scenario b).

Quantile 0.5% 5% 95% 99.5%

A 990.4 1395.8 2540.3 2784.8

P 1598.6 1935.4 3648.6 4015.0

S 799.0 924.9 1763.1 1997.5

Table 8: Selected quantiles of the profit distributions of the reinsurer resulting from the benchmark
analysis (A), the perfect information case (P ), and the Stackelberg game (S) under Scenario b)

The profit distributions under Scenario b) are displayed in Figure 2 and the corresponding

quantiles are shown in Table 8. We see that the profit distributions become bi-modal for

the Stackelberg game and the perfect information case. The reason is that the difference

between the risk premium (of the indemnity swaps) and the hedge rate (of the single swap)

of the two risk types becomes substantially larger under Scenario b). Consequently, the

two risk types result in rather varied profits for the reinsurer. Also, for both distributions,

the left peak is higher and more concentrated due to the lower and more certain profit
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Figure 2: The histogram of the distribution of the profit of the reinsurer for Scenario b) and for each case,
where A denotes the benchmark case, P the perfect information case and S the Stackelberg
game.

resulting from the low-risk type. Interestingly, the bi-modal phenomenon is not observed

in the benchmark case. This is because, while z
(A,∗)
L becomes lower than z

(A,∗)
H , α

(A,∗)
L

becomes much higher than α
(A,∗)
H . These two changes make the profit resulting from the

low-risk type even closer to that from the high-risk type, compared to Scenario a). Finally,

the benchmark analysis leads to substantially higher quantiles than the Stackelberg game

under Scenario b) as well. Hence, we see that properly addressing adverse selection in

longevity swap transaction can lead to not only a higher expected profit, but also much

lower downside risk for the reinsurer.

5 Conclusion

In this work, we study the optimal longevity swap deal between a reinsurer and a hedger

(e.g., pension funds and life insurers) in a principal-agent model in the presence of adverse

selection. We derive analytical solution to the optimal risk premium of the swap contracts

and the incentive-compatible hedge demands in a separating equilibrium, and discuss the

conditions under which the optimal solution fits to the classic literature in this field. In

particular, the high-risk type’s incentive constraint is binding and obtains full coverage

as optimal insurance. On the other hand, the low-risk type has a binding participation
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constraint with partial insurance, because the equilibrium price of the longevity swap

offered to the low-risk type is higher than the price it would have been offered under per-

fect information, at which the low-risk type would opt for full insurance. Furthermore,

we show that the equilibrium will break down if the high-risk type is substantially riskier

than the low-risk type, in which case purchasing the longevity swap would in fact lower

the low-risk type’s utility level.

To further study the impact of adverse selection, we determine the optimal hedge de-

mands both under perfect information and in a Stackelberg game where the reinsurer is

the Stackelberg leader, and compare these results with our setting under adverse selec-

tion. Using real-world mortality data and a sophisticated mortality model, we find that

potentially severe losses could be generated for the reinsurer if adverse selection is not

taken into consideration in the contracting.

Finally, although the proposed principal-agent framework is illustrated with a longevity

swap, it could be applied in other contexts, including traditional longevity reinsurance

and the innovative products discussed in the literature, such as tail longevity risk rein-

surance, longevity swaptions, and index-based longevity-linked derivatives. Furthermore,

our analysis assumes the same degree of risk aversion of both risk types. It might be the

case that the high-risk type is more risk averse than the low-risk type. Exploration of

these interesting topics are left for future research.
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A Key Variable definitions

Variable Definition

lx+t (l̂x+t) the random (expected) number of policyholders alive in year t

ωx maximal remaining life time for the policyholders with x at time 0

tpx (tp̂x) the random (expected) t-year survival probability of the policyholders

r constant annual interest rate

π̃it the time-varying risk loading at time t of the swap designed for type i = L,H

αi the constant risk premium of the swap designed for type i = L,H

zi the hedge rate of the hedger of risk type i = L,H

ε probability that the hedger is the low-risk type

Bi the expected present value of the initial risk loading for risk type i

U(x) the mean-variance utility function

Ū i reservation utility level of risk type i

D̂i the expected present value of the type-i hedger’s liability

V i the variance of the present value of the type-i hedger’s liability

ΠJ
i total present value of the fixed leg of risk type i with swap J

B Estimation and extrapolation results
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(c) The estimated values of κt.
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(d) The estimated values of γc.

Note that a linear extrapolation of β
(2)
x would result in positive values for very old ages

and consequently leads to increasing mortality rates which is unrealistic. Therefore, we

set β
(2)
x equal to β

(2)
100 for very old ages.

C The solution of the Lagrangian function

C.1 Indemnity swap with adverse selection

Based on (3.2), we have the following participation and incentive constraints:

(PC1) : U(PRL(αAL , z
A
L ))− ŪL = −αAL zAL BL −

1

2
γ((zAL )2 − 2zAL )VL

(IC2) : U(PRH(αAH , z
A
H))− U(PRH(αAL , z

A
L ))

=αAL z
A
L BL − αAH zAH BH + zAL (D̂L − D̂H)− 1

2
γ

(
(zAH)2 − 2zAH − (zAL )2 + 2zAL

)
VH .

The optimal solution shall satisfy the following first order conditions and complementary

slackness conditions of the Lagrangian function described in (3.3):

0 =
∂L
∂zAL

= εαALBL − λA1 (αALBL + γVL(zAL − 1))

+ λA2

(
αALBL + D̂L − D̂H + γ

(
zAL − 1

)
VH
)

(C.1)
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0 =
∂L
∂zAH

= (1− ε)αAH BH − λA2 (αAHBH + γVH(zAH − 1)) (C.2)

0 =
∂L
∂αAL

= εzALBL − λA1 zAL BL + λA2 z
A
L BL = zAL (εBL − λA1 BL + λA2 BL) (C.3)

0 =
∂L
∂αAH

= (1− ε)zAH BH − λA2 zAH BH ⇒ λA2 = 1− ε (C.4)

0 = −αAL zAL BL −
1

2
γVLzAL (zAL − 2) (C.5)

0 = αAL z
A
L BL − αAH zAH BH + zAL (D̂L − D̂H)− 1

2
γ

(
(zAH)2 − 2zAH − (zAL )2 + 2zAL

)
VH

(C.6)

With λA2 = 1− ε and (C.2) we get

0 = (1− ε)αAH BH − (1− ε)(αAH BH + γVH(zAH − 1))

= (1− ε)γVH(1− zAH)⇒ zAH = 1 (C.7)

If we assume that zAL > 0 we get from (C.3)

λA1 = ε+ 1− ε = 1.

Then we plug this into (C.1)

0 = (ε− 1)αALBAL − γVL(zAL − 1) + (1− ε)
(
αAL BL + D̂L − D̂H + γ

(
zAL − 1

)
VH
))

= −γVL(zAL − 1) + (1− ε)(D̂L − D̂H) + (1− ε)
(
γ
(
zAL − 1

)
VH
)

⇒ zAL = 1 +
(1− ε)(D̂H − D̂L)

γ
(
(1− ε)VH − VL

) . (C.8)

Then from Equation (C.5) we have

0 = −αAL BL −
1

2
γVL(zAL − 2) = −αAL BL +

1

2
γVL(2− zAL )

⇒ αAL =
γVL

2BL

(
1− (1− ε)(D̂H − D̂L)

γ
(
(1− ε)VH − VL

)) (C.9)
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Finally, from Equations (C.5) to (C.6), we have

0 = −αAH zAH BH + zAL (D̂L − D̂H) +
1

2
γVH +

1

2
γ
(
(zAL )2 − 2zAL

)
(VH − VL)

⇒ αH =
γVH

2BH
+
zAL
BH

(D̂L − D̂H) +
γ

2BH
(
(zAL )2 − 2zAL

)
(VH − VL). (C.10)

Next, we check if the inequalities are satisfied. Therefore, we define Ω̃ ≡ (1−ε)(D̂H−D̂L)

γ
(
(1−ε)VH−VL

) .

For the incentive constraint of the first hedger (IC1), we have

(IC1) : U(PRL(αAL , z
A
L ))− U(PRL(αAH , z

A
H))

=αAH z
A
H BH − αAL zAL BL + zAH(D̂H − D̂L)− 1

2
γ

(
(zAL )2 − 2zAL − (zAH)2 + 2zAH

)
VL

=
γVH

2
+ (1 + Ω̃)(D̂L − D̂H) +

γ

2
(Ω̃2 − 1)(VH − VL)− (D̂L − D̂H)

− γVL

2
(1− Ω̃2)− γVL

2
(1− 2Ω̃ + Ω̃2 − 2 + 2Ω̃ + 1)

= Ω̃(D̂L − D̂H) + Ω̃2γ

2
(VH − VL)

> 0,

if Ω̃ < 0. That is, the low-risk type hedger would prefer the swap tailor-made for its type.

The participation constraint for the high-risk type hedger is:

(PC2) : U(PRH(αAH , z
A
H))− ŪH = −αAH zAH BH −

1

2
γ
(
(zAH)2 − 2zAH

)
VH

= −αAH BH +
γVH

2

= (1 + Ω̃)(D̂H − D̂L) +
γ

2
(1− Ω̃2)(VH − VL)

> 0,

if Ω̃ > −1. Note that Ω̃ ∈ [−1, 0] if zAL ∈ [0, 1].
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C.2 Stackelberg game

Optimization Problem (4.2). The expected utility of hedger of risk type i is:

U(PRS
i (zSi , α

S)) = A− (1− zSi )D̂i − zSi (D̂ + αSBS)− 1

2
γV i(1− zSi )2,

and the first order condition is given by:

0 =
∂L
∂zSi

= D̂i − D̂ − αSBS + γV i(1− zSi ).

Optimization Problem (4.3). The first order conditions are given by:

0 =
∂L
∂αS

=
εBS(D̂L − D̂)

γVL
+

(1− ε)BS(D̂H − D̂)

γVH

+ BS + ε
(D̂L − D̂)BS − 2αS(BS)2

γVL
+ (1− ε)(D̂H − D̂)BS − 2αS(BS)2

γVH

=
ε(D̂L − D̂)

γVL
+

(1− ε)(D̂H − D̂)

γVH
+ 1 + ε

D̂L − D̂ − 2αSBS

γVL

+ (1− ε)D̂
H − D̂ − 2αSBS

γVH

⇔ 2αSBS

γ

(
ε

VL
+

1− ε
VH

)
= 1 + ε

2(D̂L − D̂)

γVL
+ (1− ε)2(D̂H − D̂)

γVH

⇔αSBS
(
εVH + (1− ε)VL

)
=

1

2
γVHVL + ε(D̂L − D̂)VH + (1− ε)(D̂H − D̂)VL.

Optimization Problem (4.4). The first order conditions are given by:

0 =
∂L
∂αS

= (1− ε)(BS + 2(
BS(D̂H − D̂)− αS(BS)2

γVH
) + λ

0 = λ(αS − α̃).

Suppose αS > α̃, then λ = 0, and the optimal solution is α(S,∗) =
1
2
γVH+(D̂H−D̂)

BS .

Otherwise, if αS = α̃, then the solution is simply α̃. Denote by EP
[
PRS

R(α(S,∗))
]

and

EP
[
PRS

R(α̃)
]

the expected profit of the reinsurer given α(S,∗) and α̃, respectively, we have:

EP
[
PRS

R(α(S,∗))
]
− EP

[
PRS

R(α̃)
]

=
(1

2
γVH − (γVL + D̂L − D̂H)

)2
.
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Hence, α(S,∗) is preferred to α̃ whenever 1
2
γVH 6= γVL + D̂L − D̂H . However, when

1
2
γVH < γVL + D̂L − D̂H , it holds that α(S,∗) < α̃, and thus the low-risk type hedger

will enter the market as well. In this case, the optimization problem (4.4) no longer

reflects the reinsurer’s expected profit. Therefore, optimal solution exists only when

1
2
γVH ≥ γVL + D̂L − D̂H .



REFERENCES 39

References

Blake, David, & Cairns, Andrew JG. 2021. Longevity risk and capital markets: The 2019-20 update.

Insurance: Mathematics and Economics, 99, 395–439.

Blake, David, Cairns, Andrew JG, & Dowd, Kevin. 2006. Living with mortality: Longevity bonds and

other mortality-linked securities. British Actuarial Journal, 12(1), 153–197.

Blake, David, Boardman, Tom, & Cairns, Andrew. 2014. Sharing longevity risk: Why governments

should issue longevity bonds. North American Actuarial Journal, 18(1), 258–277.

Blake, David, Cairns, Andrew JG, Dowd, Kevin, & Kessler, Amy R. 2019. Still living with mortality:

The longevity risk transfer market after one decade. British Actuarial Journal, 24.

Cairns, Andrew JG. 2013. Robust hedging of longevity risk. Journal of Risk and Insurance, 80(3),

621–648.

Cairns, Andrew JG, Dowd, Kevin, Blake, David, & Coughlan, Guy D. 2014. Longevity hedge effective-

ness: A decomposition. Quantitative Finance, 14(2), 217–235.

Chen, An, Li, Hong, & Schultze, Mark. 2021. Collective Longevity Swap: a Novel Longevity Risk Transfer

Solution and Its Economic Pricing. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=

4036480.

CMI Mortality Projections Committee, et al. 2016. CMI Mortality Projections Model consultation–

technical paper. Institute and Faculty of Actuaries. Working paper.

Cohen, Alma, & Siegelman, Peter. 2010. Testing for adverse selection in insurance markets. Journal of

Risk and insurance, 77(1), 39–84.

Coughlan, Guy, Epstein, David, Sinha, Amit, & Honig, Paul. 2007. q-forwards: Derivatives for transfer-

ring longevity and mortality risks. JPMorgan Pension Advisory Group, London, July, 2.

Coughlan, Guy D, Khalaf-Allah, Marwa, Ye, Yijing, Kumar, Sumit, Cairns, Andrew JG, Blake, David,

& Dowd, Kevin. 2011. Longevity hedging 101: A framework for longevity basis risk analysis and

hedge effectiveness. North American Actuarial Journal, 15(2), 150–176.

Cox, Samuel H, Lin, Yijia, & Shi, Tianxiang. 2018. Pension risk management with funding and buyout

options. Insurance: Mathematics and Economics, 78, 183–200.

Cutler, David M, & Reber, Sarah J. 1998. Paying for health insurance: the trade-off between competition

and adverse selection. The Quarterly Journal of Economics, 113(2), 433–466.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4036480
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4036480


REFERENCES 40

Cutler, David M, & Zeckhauser, Richard J. 1998. Adverse selection in health insurance. In: Forum for

Health Economics & Policy, vol. 1. De Gruyter.

Davies, James B, & Kuhn, Peter. 1992. Social security, longevity, and moral hazard. Journal of Public

Economics, 49(1), 91–106.

Dawson, Paul, Dowd, Kevin, Cairns, Andrew JG, & Blake, David. 2010. Survivor derivatives: A consis-

tent pricing framework. Journal of Risk and Insurance, 77(3), 579–596.

De Ferrars, Matthew. 2009. Getting off the hook: Buying-out pension liabilities. Pensions: An Interna-

tional Journal, 14(2), 111–114.

Denuit, Michel, Devolder, Pierre, & Goderniaux, Anne-Cécile. 2007. Securitization of Longevity Risk:

Pricing Survivor Bonds With Wang Transform in the Lee-Carter Framework. Journal of Risk and

Insurance, 74(1), 87–113.

Dionne, Georges, Gouriéroux, Christian, & Vanasse, Charles. 2001. Testing for evidence of adverse

selection in the automobile insurance market: A comment. Journal of Political Economy, 109(2),

444–453.

Dowd, Kevin, & Blake, D. 2019. On the Projection of Mortality Rates to Extreme Old Age. https:

//openaccess.city.ac.uk/id/eprint/23905/1/.

Dowd, Kevin, Blake, David, Cairns, Andrew JG, & Dawson, Paul. 2006. Survivor swaps. Journal of

Risk and Insurance, 73(1), 1–17.

Dowd, Kevin, Cairns, Andrew JG, & Blake, David P. 2019. A Simple Approach to Project Extreme

Old Age Mortality Rates and Value Mortality-Related Financial Instruments. https://openaccess.

city.ac.uk/id/eprint/23906/1/.
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